COMPARISON OF CORE TEMPERATURE THRESHOLDS FOR VENTILATION TO VENTILATION THRESHOLDS 1 AND 2 DURING INCREMENTAL EXERCISE IN HUMANS

M.D. White, G.P. Kenny and F. Haman, Lab for Exercise & Environ Physiol, Human Kinetics, Memorial Univ, St. John's, NF, Canada.

Human ventilation during a progressive exercise to maximal attainable levels, expressed as a function of oxygen consumption (VO₂), shows two successive inflection points or ventilation thresholds (VT). Employing the terminology of Skinner-McLellan-Kinderman, the lower ventilation threshold (VT_1) is suggested to coincide with the onset of blood lactate accumulation and the upper ventilation threshold (VT_2) is possibly of a neurogenic origin. At close to 70-80% of the maximal attainable work-rate, core temperature thresholds for ventilation were also demonstrated (White and Cabanac 1996). However, it is not known if the work rates at these core temperature thresholds for ventilation are the same or different than the work rates at VT_1 and VT_2 . The purpose of the present study was to compare the VO₂ at the core temperature thresholds for ventilation to both VT_1 and VT_2 . The goal was to address if these three separate ventilation thresholds are similar or different physiological or metabolic responses. Six fit male, college-aged subjects pedaled a cycle ergometer on 2 occasions in progressive exercise tests until the point of exhaustion. In one exercise session work rate was increased by 20W/2 min (slow ramp) and in the other by 40W/2 min (fast ramp). Subjects were instrumented for esophageal temperature (T_{es}), skin temperatures and their expired gases were collected to assess oxygen consumption (VO_2) , carbon dioxide production (VCO_2) and minute ventilation ($V_{\rm F}$). In both exercise sessions, ventilatory equivalents for oxygen consumption ($V_{\rm F}$ /VO₂) and carbon dioxide production (V_E/VCO_2) were plotted as a function of both T_{es} and VO_2 . These plots allowed the determination of VO_2 at each of the T_{es} threshold for ventilation, VT_1 and VT_2 . In the slow ramp session the VO_2 of 2.85± 0.23 l/min at the T_{es} threshold for V_E/VO_2 (p< 0.01) and the VO_2 of 2.44± 0.19 l/min at the T_{es} threshold for V_E/VCO_2 (p< 0.01) were significantly greater than the VO_2 of 1.81± 0.11 l/min at VT_1 . In the fast ramp session the VO_2 of 2.87±0.16 l/min at the T_{es} threshold for V_E/VO_2 (p< 0.001) and the VO₂ of 2.68±0.15 l/min at the T_{es} threshold for V_E/VCO_2 (p< 0.01) were both significantly greater than the VO_2 of 1.15±0.23 l/min at VT_1 . Comparisons of VO_2 at the T_{es} threshold for ventilation to VO_2 at VT_2 gave different results. In the slow ramp session the \tilde{VO}_2 at the T_{es} threshold for V_E/VO_2 was not significantly different than the VO₂ of 3.01 ± 0.17 l/min at VT_2 . The VO₂ at the T_{es} threshold for V_E/VCO_2 in the same slow ramp session was significantly lower (p < 0.01) than VT₂. In the fast ramp session the VO₂ at the T_{es} thresholds for V_E/VO₂ and V_E/VCO₂ were both not significantly different than the VO₂ of 2.71 ± 0.18 /min at VT₂. In conclusion, the VO₂ at the T_{es} thresholds for ventilation is significantly greater than the oxygen consumption at VT₁ and appears not to be different than oxygen consumption at VT₂. The results appear to support that VT_1 is a ventilatory response occurring at significantly lower VO₂ than either VT₂ or the T_{es} threshold for ventilation.

White, M.D. & Cabanac, M. (1996) Exercise Hyperpnea and hyperthermia in human. J. Appl. Physiol. 81, 1249-1254.

mdwhite@mun.ca