SHIVERING THERMOGENESIS IN AUSTRALIAN ANTARCTIC EXPEDITIONERS: COMPARISON OF THERMOREGULATORY MODELS

R.R. Gonzalez¹, *P.* Sullivan², W.T. Matthew¹, L.A. Blanchard¹ and D.J. Lugg², ¹U.S. Army Research Institute of Environmental Medicine, Natick, MA, ²Australian Antarctic Division, Kingston, Tasmania.

The general response to acute cold stress is vasoconstriction and increased heat production (M) via shivering. Both skin and internal body temperatures (T_c) must be lower than a fixed threshold before shivering ($\Delta M = M-M_{basal}$) occurs. Several thermoregulatory models include ΔM algorithms as a $f(T_c, \overline{T}_{sk})$. Other models include ΔM as a f(% body fat (%BF), lean body mass (LBM)). We examined how well 3 models predict ΔM for a given cold stress in a data set of resting women and men prior to their sojourn for a year in Antarctica. Six women and 29 men (%BF ranges 10-46%) resting semi-supine, unclothed except for underwear + smock ($R_T = 0.022 \text{ m}^2 \cdot \text{K} \cdot \text{W}^{-1}$), were exposed for 2 h to cold air. Fifteen men and 5 women completed a cold stress test (CST group: Ta=5.7±0.6SD °C;rh = 50%;V=0.2m^{\circ}r^{-1}) and a separate group of 14 men and 1 woman completed a cool test (Cool group: Ta = 8.4 ± 1.3 SD °C). Extensive peripheral (\overline{T}_{sk} and finger temperatures) vasoconstriction occurred during the CST and less so in the Cool, elevating mean resting temperature pill level (T_c) by +0.15-0.2°C for the first 30min followed by a mean decline in T_c of -0.01°C/min. ΔM (W•m⁻²) at 5 time points was compared against 3 model predictions: (1) Tikuisis and Giesbrecht (Tik-G), 1999: $\Delta M = 156 \cdot (37 \cdot T_c) + 47 \cdot (33 \cdot \overline{T}_{sk})^2 - 1.57 \cdot (33 \cdot \overline{T}_{sk})^2 \cdot \%$ BF^{-0.5}; (2) Stolwijk and Hardy (S-H), 1977: $\Delta M = [13 \cdot (T_c - 37) + 0.4 \cdot (\overline{T}_{sk} - 34)] \cdot (\overline{T}_{sk} - 34)$ and (3) Tikuisis et al., (Tik), 1991: $\Delta M/LBM = \{0.0422 \cdot (35.4 \cdot \overline{T}_{sk})^2 \} \cdot (50 \cdot K + 50 \cdot (50 \cdot K + 50 \cdot K + 50 \cdot (50 \cdot K + 50 \cdot K + 50 \cdot (50 \cdot K + 50 \cdot (50 \cdot K + 50 \cdot K + 50 \cdot (50 \cdot (50 \cdot K + 50 \cdot (50 \cdot (50 \cdot K + 50 \cdot (50 \cdot$

Data vs Model	$RMS (W \bullet m^{-2})$	$RMS (W \bullet m^{-2})$	$RMS (W \bullet m^{-2})$
	Men (N=14)	Men(N=15)	Women (N=5)
obs∆M vs Tik-G	28.4±8.2	26.6±13.2**	29.6±15.1
	Cool group	CST group	CST group
obs∆M vs S-H	23.2±16.3	34.9±14.1**	33.8±15.6
	Cool group	CST group	CST group
obs∆M vs Tik †	23.7±15.7	22.9±9.3	15.2±3.1
	Cool group	CST group	CST group

[**RMS Comparison between models P<0.0001; all others NS. †Normalized to W•m⁻². No women in Cool group]. RMS from the Tik-G was < then the S-H prediction in the CST group of men. All predictions were equal in RMS in the Cool groups. For %BF $\leq 20\%$, Tik-G was highly correlated with integrated mean body temperature (T_{b,I}) derived from partitional calorimetry (R²=0.89; P<0.001; ΔM (Tik-G) = -33.5•(T_{b,I}) + 1226). ΔM calculated from cold-air models incorporating %BF, T_c and \overline{T}_{sk} inputs serve as reliable predictors of shivering response over a limited cold stress for both men or women.

Stolwijk, J.A.J., and Hardy, J.D., 1977. Control of body temperature. In:Handbook of Physiology-Reactions to Environmental Agents. Am.Physiol. Society, Rockville, MD, Chapter 4, pp 45-68.

- Tikuisis, P., and Giesbrecht, G.G., 1999. Prediction of shivering heat production from core and mean skin temperatures. Eur. J. Appl. Physiol. 66,221-229.
- Tikuisis, P, Bell, D.G., and Jacobs, I., 1991. Shivering onset, metabolic response, and convective heat transfer during cold air exposure. J.Appl. Physiol. 70,1996-2002.

richard.gonzalez@na.amedd.army.mil