Angiotensin II via AT_1 receptors may mediate apoptosis in the cardiac conduction system of rats

U. Vongvatcharanon¹, S. Vongvatcharanon², N. Radenahmad¹, P. Kirirat¹, P. Intasaro¹, P. Sobhon³ and T. Parker⁴, ¹Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat-Yai 90112, Thailand, ²Department of Oral Surgery, Faculty of Dentisty, Prince of Songkla University, Hat-Yai 90112, Thailand, ³Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand and ⁴School of Biomedical Science, Nottingham University, Nottingham NG7 2UH, UK.

Apoptosis has been suggested as a possible cause of gradual development of complete heart block and fatal arrhythmias associated with absence of the AV node, sinus, and internodal pathways (James *et al*, 1996). Studies about apoptosis in the heart by means of cardiomyocyte cell culture have demonstrated that angiotensin II (Ang II) mediates cardiomyocyte apoptosis via angiotensin II type I receptors (AT₁) (Cigola *et al*, 1997). The transgenic m(Ren-2)27 (TG) rat carries the additional *Ren-2* gene, the expression of which results in an increase of heart Ang II (Campbell *et al*, 1995), thus potentially affecting the cell growth/death equilibrium. This study addresses the question of role of Ang II/AT₁ receptors mediated apoptosis in the sinoatrial (SA) and atrioventricular nodes (AV).

Six, male 2 week TG and Hannover Sprague Dawley (SD) rats were anaesthetised by pentobarbitone sodium i.p. injection (100 mg/kg). The hearts were removed and fixed in 10% formaldehyde. Following dehydration and embedding in paraffin, 5 µm serial sections were cut then stained with Masson Trichrome to localize SA and AV nodes. The sections containing SA or AV node were processed for either: (a) calculation of apoptotic nuclei following terminal deoxnucleotidyl transferase nick end labelling of 3'-OH ends using Fluorescein-FragELTM; or (b) immunohistochemical labelling with antibodies to the AT₁ receptors prior to confocal scanning laser microscopical analysis. Quantification of AT₁ receptors was performed by using Microimage analysis software (Olympus).

Group	Apoptotic cells/mm ²		AT_1 receptors (×10 ³)/mm ²	
	SA	AV	SA	AV
SD	0.040±0.07	0.164±0.12	1.14±0.17	7.63±1.91
TG	0.140±0.37*	0.433±0.11*	1.67±0.26*	12.50±3.97*

Data expressed as mean \pm SD (n=6)

* = significant compared with control (P<0.05) (Independent-Sample T-test)

The table shows that the number of apoptotic cell in both the SA and AV node is significantly greater in the TG compared with the SD (p<0.05). Quantification of AT_1 receptors within SA and AV node shows that there were significantly more AT_1 receptors in the TG compared with the SD (p<0.05). These data suggest that an elevated level of apoptosis in the TG rat heart compared with the controls could be accounted for by *Ren-2* derived Ang II active via AT_1 receptors.

Campbell, D.J., Rong, P., Kladis, A., Rees, B., Ganten, D. and Skinner, S.L.(1995) Angiotensin and Bradykinin peptides in the TGR (mRen-2)27 rat. *Hypertension*, 25, 1014-1020.

Cigola, E., Kajstura, L.B., Meggs, L.G. and Anversa, P. (1997) Angiotensin II activates programmed myocyte cell death *in vitro*. *Experimental Cell Research*, 231, 363-371.

James, T.N., Martin, E., Willis, P.W. and Lohr, T.O. (1996) Apoptosis as a possible cause of gradual development of complete heart block and fatal arrhythmias associated with absence of the AV node, sinus, and internodal pathways. *Circulation*, 93, 1424-1432.