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Summary

1. The elusive nature of endothelium-derived
hyperpolarizing factor (EDHF) has hampered detailed study
of the ionic mechanisms that underlie the EDHF
hyperpolarization and relaxation. Most studies have relied
on a pharmacological approach in which interpretations of
results can be confounded by limited specificity of action of
the drugs used.Nevertheless, small-, intermediate-, and
large- conductance Ca2+-activated K+ channels (SKCa, IKCa,
and BKCa, respectively), have been implicated, with inward
rectifier K+ channels (KIR) and Na+/K+ ATPase also
suggested by some studies.

2. Endothelium-dependent membrane currents
recorded using single electrode voltage-clamp from
electrically short lengths of arterioles in which the smooth
muscle and endothelial cells remained in their normal
functional relationship have provided useful insights into
the mechanisms mediating EDHF. Charybdotoxin (ChTx)
or apamin reduced, while apamin plus ChTx abolished the
EDHF current. The ChTx and apamin sensitive currents
both reversed near the expected K+ equilibrium potential,
were weakly outwardly rectifying, and displayed little, if
any, time or voltage-dependent gating, thus having the
biophysical and pharmacological characteristics of IKCa and
SKCa channels, respectively.

3. IKCa and SKCa channels occur in abundance in
endothelial cells and their activation results in EDHF-like
hyperpolarization of these cells.There is little evidence for
a significant number of these channels in healthy,
contractile vascular smooth muscle cells.

4. In a number of blood vessels in which EDHF
occurs, the endothelial and smooth muscle cells are
electrically coupled via myoendothelial gap junctions. In
contrast, in the adult rat femoral artery, in which the smooth
muscle and endothelial layers are not coupled electrically,
EDHF does not occur, even though acetylcholine evokes
hyperpolarization in the endothelial cells.

5. In vivo studies indicate that EDHF contributes
little to basal conductance of the vasculature, but it
contributes appreciably to evoked increases in conductance.

6. EDHF responses are diminished in some diseases
including hypertension, preeclampsia and some models of
diabetes.

7. The most economical explanation for EDHFin
vitro and in vivo in small vessels is that it arises from
activation of IKCa and SKCa channels in endothelial cells.
The resulting endothelial hyperpolarization spreads via
myoendothelial junctions to result in the EDHF-attributed

hyperpolarization and relaxation of the smooth muscle.

Introduction

Endothelial K+ channels have been widely implicated
in endothelium-dependent vasodilation. Initially it was
considered that endothelial cell hyperpolarization, via the
opening of K+ channels, would facilitate Ca2+ influx in
these cells by increasing the driving force for this cation1,2

and in this way enhance production of the “classical”
endothelium-dependent vasorelaxants NO and PGI2, which
rely on an increase in cytoplasmic free Ca2+. Howev er,
since the Ca2+ equilibrium potential is likely to be around
+130 mV, a large driving force of +190 mV for Ca2+ influx
exists at a resting potential of −60 mV. This means that
endothelial hyperpolarization would be expected to
contribute little extra to the driving force for Ca2+ influx.
Under such conditions, block of endothelial
hyperpolarization might be expected to have little effect on
cytoplasmic Ca2+ levels. Suchhas been shown to be the
case3,4.

The discovery of the additional vasodilator
phenomenon of endothelium-derived hyperpolarizing factor
(EDHF) has prompted renewed interest in the role of
endothelial K+ channels in the regulation of vascular tone.
EDHF is so-called because its vasodilator effects are
strongly associated with smooth muscle hyperpolarization,
and because the nature of EDHF was unknown5-7 and
remains controversial8,9. There are currently three main
suggestions as to the nature of EDHF, which are not
mutually exclusive but may represent differences between
species, between vascular beds and between different
endothelial stimulants. One suggestion is that EDHF
represents endothelial hyperpolarization generated by the
activation of Ca2+-activated K+ channels (KCa) that spreads
passively via myoendothelial gap junctions to result in
hyperpolarization of the smooth muscle cells10-17.
According to this idea, endothelial K+ channels would
influence smooth muscle contractile activity by reducing
Ca2+ influx via voltage-operated Ca2+ channels and by
suppression of key enzymes involved in agonist-induced
transduction pathways18,19. Another suggestion is that
EDHF is a product of the cytochrome P450 pathway, such
as an epoxyeicosatrienoic acid (EET), and since EETs can
activate large-conductance, Ca2+-activated K+ channels
(BKCa), it has been inferred that EDHF evokes
hyperpolarization via the activation of BKCa channels on
the smooth muscle cells20-27. The third suggestion is that
K+ efflux from endothelial cells via intermediate- and
small-conductance Ca2+-activated K+ channels (IKCa and
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SKCa, respectively), activates inward rectifier K+ channels
(KIR) and the Na+/K+ATPase on the smooth muscle cells28.
Thus, different ionic mechanisms have been proposed to
underlie the actions of EDHF. EDHF plays an increasingly
prominent role in vasodilation as arterial diameter
decreases, and is thus likely to be important in tissue
perfusion. SinceEDHF appears to decline with advancing
age and to be targeted in diseases such as hypertension and
diabetes, knowledge of the ionic mechanisms underlying
EDHF would be expected to give an improved
understanding of the nature of EDHF and to impact on our
understanding of the regulation of vascular tone in health
and in disease, and this will be the focus of the present
article.

Pharmacology of EDHF relaxation and
hyperpolarization

Earliest studies to identify the ionic mechanisms
underlying EDHF utilized blockers of various ion
pathways. Ofconcern was that the effects observed could
have resulted from an action of the drugs used on the
endothelial cells, thus affecting the production of EDHF,
rather than the EDHF response in the smooth muscle.Early
studies demonstrated an efflux of86Rb5, an increase in
membrane conductance29, and an insensitivity to the
Na+/K+ATPase inhibitor ouabain30 which suggested that
EDHF activates a K+ conductance. TheK+ channel
blockers apamin (selective for SKCa channels)31 or
charybdotoxin (ChTx, which blocks BKCa, IKCa, and some
voltage-dependent K+ channels, KV)32 abolished EDHF
relaxations, but in other studies, either blocker by itself had
little, if any, effect. However, total block was achieved by a
combination of apamin plus ChTx4,33-39. A general lack of
effectiveness of blockers of KATP and KV channels indicated
that these channels were unlikely to be involved31,33-35,40.
Iberiotoxin (IbTx), which selectively blocks BKCa channels,
inhibited the EDHF relaxation in some studiesin vivo41 and
in vitro42,43 but was ineffective in other studies against the
EDHF relaxation34,35,44-46or hyperpolarization26,45,47. This
ineffectiveness of IbTx, together with at least partial block
by ChTx, suggested that the ChTx-sensitive channel was
the IKCa channel44. Although tetraethylammonium (TEA,
which blocks BKCa and some KV channels) produced an
effect in some studies32,35,44, the anti-muscarinic actions of
TEA48 may cloud the interpretation of its effects.
4-Aminopyridine (4-AP, which blocks KV channels)
diminished the EDHF response in some studies, but an
alternative explanation is that it did so through inhibition of
the increase in endothelial cytoplasmic free Ca2+ 4.

In electrophysiological studies, KV and KATP blockers
did not affect the EDHF hyperpolarization in the guinea-pig
coronary artery45,49-51. Howev er, the hyperpolarization was
reduced by TEA (1-5mM), ChTx (5×10−8 M) and
4-AP49-51, while apamin had no effect45,49or caused a small
reduction in the initial phase of the hyperpolarization51.
Somewhat similarly, in guinea-pig carotid arteries and
submucosal arterioles, the EDHF hyperpolarization was
insensitive to blockers of KATP and KV channels, but was

reduced by ChTx and further reduced by ChTx plus
apamin52-54. In the rat, the EDHF hyperpolarization in the
tail artery was abolished by a combination of ChTx plus
apamin55, while in the mesenteric artery, apamin was more
effective than ChTx, but both were required to completely
block the EDHF hyperpolarization and relaxation56. In the
mesenteric artery of the rabbit, apamin alone abolished the
EDHF hyperpolarization, as did TEA (10mM), while it was
unaffected by ouabain, 4-AP, or Ba2+ 57.

Overall, the studies on EDHF-induced
hyperpolarizations and relaxations produced no strong
evidence for the involvement of KV or KATP channels,
evidence for the involvement of BKCa channels in several
studies, and strongly implicated IKCa, and SKCa channels in
many other studies. More recently, selective and potent
blockers of IKCa channels have been developed that are
analogues of clotrimazole that lack the imidazole ring and
therefore do not block cytochrome P450 enzymes58. These
compounds, TRAM-34 and TRAM-39, particularly in
combination with apamin, block the EDHF
hyperpolarization and relaxation, providing stronger
pharmacological evidence for the involvement of IKCa
channels, in addition to SKCa channels59-62.

K+ as an EDHF

The elegant hypothesis that EDHF may be none other
than K+ released from the endothelial cells raised additional
candidates for the ionic mechanisms underlying EDHF28.
According to this scheme, stimulation of endothelial cells
results in the activation of endothelial KCa channels. The
resulting efflux of K+ is then proposed to accumulate in the
myoendothelial space where it stimulates the Na+/K+

ATPase and KIR channels in the smooth muscle28. This
study gav e a fresh boost to investigations into the ionic
mechanisms underlying the EDHF hyperpolarization.
Using low concentrations of Ba2+ to specifically block KIR
(typically around 30µM), ouabain to block the Na+/K+

ATPase, and attempted mimicry by the exogenous
application of modest increases in KCl, a number of studies
obtained evidence against the K+ hypothesis63-67, while
other studies provided evidence in favour of the
idea38,39,68-70. Such studies have generally placed strong
emphasis on block of EDHF responses by ouabain.
However, the effects of ouabain need to be interpreted with
considerable caution.Ca2+ overload71-73 has been invoked
to explain an inhibition of a K+ channel by a 10 minute
exposure to ouabain in canine ventricular myocytes74, while
ouabain also inhibited the iloprost-induced
hyperpolarization, which is inhibited by glibenclamide, in
the rat hepatic artery16. In the bovine coronary artery,
ouabain blocked relaxations induced by the NO donor
glyceryl trinitrate39. A recent study indicating that ouabain
is capable of decreasing gap junction permeability75 is
particularly significant since such effects are consistent with
EDHF being due to electrotonic spread of hyperpolarizing
current from the endothelium to the smooth muscle (see
below). In that study, the cells were exposed to ouabain for
one hour, which is appreciably longer than in studies on the
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Figure 1. Components of EDHF current recorded from segments of guinea-pig submucosal arterioles.
Aa, Ba, ACh (1µM) evoked an outward, EDHF current with the membrane clamped at −63 mV. Periodic transients are
responses to voltage ramps (insets). Ab, ChTx (30 nM) and Bb, apamin (0.5µM) reduced the EDHF current. Ac,Bc, sub-
traction of the current in Ab from Aa reveals the ChTx-sensitive component of current, and subtraction of the current in Bb
from Ba reveals the apamin-sensitive component of current. Ad,Bd, the I-V relationships for the ChTx-sensitive and
apamin-sensitive components, respectively, were well-described by the GHK equation for a K+ current (smooth lines).
Reproduced with permission of The Physiological Society from Colemanet al16.

effects of ouabain on EDHF. The effects of shorter duration
exposures to ouabain on gap junction permeability were not
determined.

Voltage-clamp studies

Ionic mechanisms are perhaps ideally studied by
recording the membrane currents under voltage-clamp.
Voltage-clamp studies of vascular tissues typically involve
enzymatic isolation of either the smooth muscle or
endothelial cells, and recording from the isolated cells using
the patch-clamp technique.Such cellular isolation
overcomes the problems of spatial clamp control in a
syncytial tissue. However, to record the ionic currents
underlying the elusive and controversial EDHF, a
preparation was required in which the endothelial and
smooth muscle cells remained in their normal functional
relationship, especially in view of electrotonic spread as a
potential mechanism.Such a preparation needed to be
amenable to voltage-clamp, preferably without exposing the
cells to digestive enzymes that could potentially disrupt
mechanisms underlying EDHF. Hirst and Neild76

demonstrated that the submucosal arterioles lying in the
wall of the small intestine of the guinea-pig had an
electrical length constant of about 1600µm, and that the
arterioles could be cut into short segments that remained
physiologically viable. Hirst and colleagues subsequently
showed that if the arterioles were cut into sufficiently short
lengths, they could be voltage-clamped with a single
intracellular microelectrode using a switching amplifier77,
though the limited current-passing ability of the
microelectrodes restricted the range of potentials over
which the membrane could be clamped.The contractile
activity of these arterioles could also be recorded using the
video tracking hardware and software of diamtrak,

developed by Neild78. These arterioles therefore seemed a
good preparation in which to record the EDHF currents
under voltage-clamp, and also to determine their functional
significance in terms of contractile activity. Howev er, it
must be borne in mind that increasing the amount of stretch
in the wall of the guinea-pig coronary artery increased the
amplitude of hyperpolarization evoked by NO, iloprost, and
EDHF, though the EDHF hyperpolarization was less
sensitive to stretch than that of NO and iloprost79. Thus,
since the short segments of arterioles cannot be pressurized,
there may be some differences in the activity of the
underlying ion channels and their regulatory mechanisms
compared with the more physiological, pressurized state, in
which the ionic mechanisms cannot be readily studied.

In the submucosal arterioles, with the membrane
potential clamped at around −65mV, and in the presence of
Nω-nitro-L-arginine methylester (L-NAME) and
indomethacin to inhibit NO production and cyclooxygenase
activity, respectively, acetylcholine (ACh) and substance P
ev oked an outward current attributed to EDHF16,17 (Fig
1Aa, Ba) and also resulted in EDHF-induced relaxation16,17.
Current-voltage (I-V) relationships, obtained from the
current responses to periodic voltage ramps, revealed that
the EDHF current reversed at a potential around that for K+,
indicating that the EDHF current involved the activation of
K+ channels. ChTxreduced the EDHF current (Fig 1Ab),
and by subtraction of currents, the ChTx-sensitive
component was revealed (Fig 1Ac). Its I-V relationship
was well described by the Goldman-Hodgkin-Katz (GHK)
equation for a K+ current (Fig 1Ad), indicating that the
ChTx-sensitive component of current involved the
activation of K+ channels whose gating was insensitive to
membrane potential.This voltage-insensitivity, together
with block by ChTx but not IbTx, provides both biophysical
and pharmacological evidence that this component of
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current was carried by IKCa channels16. Apamin similarly
inhibited a component of current (Fig 1Bb,c) whose I-V
relationship was well-described by the GHK equation for a
K+ current (Fig 1Bd). An insensitivity to gating by
membrane potential, together with block by apamin,
indicates that this component of current was carried by
SKCa channels. Inthe combined presence of ChTx plus
apamin, the EDHF current and relaxation were abolished,
indicating that the only currents contributing to the EDHF
response were those flowing through IKCa and SKCa
channels in this preparation16.

Ba2+ inhibited a component of the holding current
whose I-V relationship was inwardly rectifying, typical of
KIR channels, and very different to the I-V curves for the
EDHF components of current16,17 (Fig 2). Ouabain also
inhibited a component of the holding current, and its I-V
relationship was typical of that for the Na+/K+ATPase, and
very different to that for the EDHF currents16 (Fig 2). The
addition of 5 - 10 mM KCl activated a current which was
largely blocked by Ba2+ 16,17. These results indicate that
KIR channels and the Na+/K+ATPase contribute to the
resting current in the submucosal arterioles, and that the KIR
channels can be activated by the addition of K+.
Significantly, howev er, these results provide strong
evidence that KIR channels and the Na+/K+ATPase do not
contribute to the EDHF current in these arterioles.

Myoendothelial electrical coupling and the location of
IKCa and SKCa channels

The involvement of IKCa and SKCa channels in the
EDHF response raises the critical question of where these
channels are located.An associated question is whether the
endothelial and smooth muscle cells are electrically
coupled, since it has been suggested that EDHF may
represent electrotonic spread of hyperpolarization from the
endothelium to the smooth muscle14 (see above). Strong
evidence indicates that such coupling occurs in a number of
vessels (recently reviewed80). To test this possibility in
guinea-pig submucosal arterioles, recordings of membrane
potential were made from dye (Lucifer Yellow)-identified
endothelial and smooth muscle cells. Excitatory junction
potentials (EJPs) in response to sympathetic nerve
stimulation, and action potentials associated with
vasoconstriction, all of which were initiated in the smooth
muscle cells, were also recorded from endothelial cells.
Significantly, the responses recorded from the endothelial
cells were indistinguishable from those recorded from the
smooth muscle cells, indicating that the electrical coupling
is very strong and that the two layers function essentially as
a single electrical syncytium16,17. Such electrical coupling
does not occur in all vessels. Morerecently, Sandow and
colleagues found that in the more proximal parts of the
adult rat femoral artery, there is a lack of both
myoendothelial electrical coupling together with an absence
of myoendothelial gap junctions81. Significantly, this lack
of myoendothelial coupling was associated with a lack of
EDHF-mediated hyperpolarization and relaxation in the
smooth muscle, even though the endothelial cells

hyperpolarized when stimulated with agents such as ACh
and the hyperpolarization was blocked by ChTx plus
apamin81. Furthermore, in the rat mesenteric artery, in
which myoendothelial coupling is strong81,82, use of
connexin mimetics inhibited the EDHF response recorded
from the smooth muscle but not the endothelial cell
hyperpolarization. Cautionis required in interpreting the
effects of the connexin mimetics such as the Gap
compounds since they must be used at relatively high
concentrations, and there have been very few
electrophysiological studies of their effects on electrical
coupling. Nevertheless, taken as a whole, the observations
of Sandow and colleagues81 provide critical support for the
idea that EDHF is generated in the endothelial cells and
propagates via myoendothelial gap junctions to result in the
smooth muscle EDHF hyperpolarization and relaxation.

An endothelial site for the initiation of the EDHF
hyperpolarization suggests that the IKCa and SKCa channels
are located in endothelial rather than in smooth muscle
cells. Indeed, there is very little evidence that IKCa
channels occur in normal, healthy, contractile smooth
muscle cells, although electrophysiological and expression
analysis reveal that IKCa channels can occur in cultured
cells and during hyperplasia83,84. There is also little
evidence that SKCa channels occur in non-cultured vascular
smooth muscle cells85,86. In contrast, in endothelial cells,
electrophysiology, immunohistochemistry, and expression
analysis reveal an abundance of IKCa and SKCa
channels85-89. Consistent with such observations,
endothelial cells which are isolated and not in contact with
vascular smooth muscles respond to ACh with
hyperpolarization which can be reduced by ChTx90,91 and
abolished by ChTx plus apamin81,91. Furthermore, EDHF-
induced relaxations of perfused mesenteric arteries were
blocked when ChTx plus apamin were added to the
perfusate in the lumen and thus applied selectively to the
endothelial cells, but the relaxations were not blocked when
these K+ channel blockers were added to the superfusate92.

EDHF in vivo

Despite numerous studies indicating that EDHF is
capable of evoking considerable relaxation in small vessels
in vitro, an important consideration is whether EDHF is
functionally important in vivo. Significant relaxationin
vivo has been reported for an EDHF response attributed to a
product of the cytochrome P450 pathway41,93-95 and
blocked by IbTx, implicating BKCa channels41. This EDHF
does not appear to contribute to basal tonein vivo41. The
most widely reported EDHF responsein vitro is that which
is blocked by a combination of ChTx plus apamin and
involves IKCa and SKCa channels located in the endothelium
(discussed above). The in vivo significance of this form of
EDHF was evaluated in the rat mesenteric and hindlimb
beds96. In the presence ofL-NAME and indomethacin,
local infusion of ChTx plus apamin selectively into these
beds had no effect on basal blood flow or conductance.
However, these agents abolished the appreciable increases
in blood flow and conductance evoked by ACh and
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Figure 2. Contribution of KIR and Na+/K+ATPase to arteriole currents
a, ACh (1µM) evoked an outward, EDHF current. b,the EDHF current was not reduced by Ba2+ (30 µM), or c, by the
addition of ouabain (200µM) in the continuing presence of Ba2+. d, the I-V relationship for EDHF obtained from the cur-
rent responses to periodic voltage ramps in panel a, was well-described by the GHK equation for a K+ current (smooth
line), but was not affected by Ba2+ (e) or ouabain plus Ba2+ (f). g, Ba2+ inhibited a component of the holding current (b −
a) which had an inwardly-rectifying I-V relationship typical of KIR channels. h,ouabain inhibited a component of holding
current (c − b) with a relatively flat I-V relationship typical of the Na+/K+ATPase. Reproduced with permission of The
Physiological Society from Colemanet al16.

bradykinin, whereas IbTx was ineffective. These results
indicate that in these vascular beds, EDHF does not
contribute to basal blood flow, but makes a significant
contribution to evoked blood flow. These effects do not
involve BKCa channels, but are due to activation of IKCa and
SKCa K+ channels located in the endothelial cells96. These
results support and extend an earlierin vivo study in which
connexin-mimetic peptides, thought to inhibit gap
junctions, abolished EDHF-mediated increases in blood
flow in the rat renal microcirculation97.

EDHF in disease

Endothelial dysfunction is a feature of a number of
diseases and this has prompted investigations into the fate
of EDHF in various diseases. The effects of hypertension
on EDHF have been assessed in vessels from spontaneously
hypertensive rats (SHR) compared with vessels from
Wistar-Kyoto (WKY) rats. In the mesenteric artery, the
EDHF hyperpolarization was halved and the relaxation
significantly reduced98, while in the tail artery the
hyperpolarization was decreased by 28%55. An increase in
the number of layers of smooth muscle cells together with a

greater incidence of myoendothelial gap junctions (MEGJs)
in SHRs55 might explain the decreased EDHF response in
terms of an increased electrical “sink” for the endothelium-
derived hyperpolarizing current. In preeclampsia, a
pregnancy-specific form of hypertension in women, the
EDHF vasodilator response in myometrial arteries is also
significantly reduced and this may represent a failure of its
up regulation as occurs in these tissues in the normal
adaptation to pregnancy in healthy women99 .

Changes in EDHF in diabetes have been studied in
most detail in streptozotocin (STZ)- induced diabetes in
rats. In the mesenteric bed, the EDHF
hyperpolarization100,101 and relaxation100-102 were
significantly diminished compared with responses from
control animals. EDHF-induced relaxations were also
reducedin vivo in the renal circulation, with the most severe
deficit occurring in the smallest arterioles103. The EDHF
relaxation was also impaired in the renal artery of obese
Zucker rats, which is an animal model of insulin resistance
and Type II diabetes104. Howev er, in a mouse model of
Type II diabetes, thedb/db-/-, the EDHF relaxation of first
order mesenteric arteries was not diminished105, indicating
that EDHF is not impaired in all models of diabetes.The
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mechanisms underlying disease-associated impairment of
EDHF-attributed hyperpolarization and relaxation are far
from clear and require further studies to determine whether
the dysfunction arises in the smooth muscle cells, and/or
the endothelial cells, and/or myoendothelial
communication106. This knowledge could provide the basis
of novel therapeutic interventions in the amelioration or
prevention of vascular complications of these diseases.

Conclusions

In many vessels, abolition of EDHF-attributed
relaxation and/or hyperpolarization by apamin combined
with ChTx, but not IbTx, or with a TRAM compound,
implicate SKCa and IKCa as the ion channels carrying the
current which underlies the EDHF hyperpolarization.
Biophysical properties of the EDHF current, obtained from
voltage-clamp results, strongly support the involvement of
these channels and exclude the involvement of other ionic
mechanisms such as KIR channels and the Na+/K+ ATPase,
at least in submucosal arterioles.In some vessels, EDHF is
attributed to a product of the cytochrome P450 pathway and
to involve the activation of BKCa channels. However, the
poor selectivity of many blockers of cytochrome P450
pathways and differences in the actions of various agonists
applied to stimulate the endothelial cells, means that further
studies are required to better understand the role of the
cytochrome P450 pathway in the EDHF response.

IKCa and SKCa channels occur in abundance on
endothelial cells but not on smooth muscle cells and
endothelial cells respond to agonists with EDHF-like
hyperpolarization. Furthermore, there is strong
myoendothelial electrical coupling in vessels with EDHF
responses, but not in vessels without EDHF, although the
range of vessels that have been tested is limited.Together,
these observations suggest that EDHF likely involves the
activation of KCa channels in the endothelial cells, and that
the EDHF hyperpolarization of smooth muscle involves the
spread of hyperpolarizing current from the endothelium via
myoendothelial gap junctions. Some variations between
vascular beds and species in the relative effectiveness of
apamin, ChTx and IbTx is likely to reflect differences in the
relative densities of the KCa channels. BKCa channels may
be important in some vessels, while IKCa and SKCa channels
are more important in many other vascular beds.These
endothelial channels make an important contribution to
vascular tonein vivo, and impairment of their effectiveness
contributes to endothelial dysfunction in a range of
diseases, thus raising the mechanisms underlying EDHF as
potential therapeutic targets.
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