Contracting muscle mass and inactive muscle effects on K⁺ dynamics during exercise

M.J. McKenna¹, S. Sostaric¹, C.A. Goodman¹, X. Gong¹, J. Aw², J. Leppik¹, C.H. Steward¹, S.F. Fraser³, H. Krum², R.J. Snow⁴, M.J. Brown⁵, ¹Human Movement Recreation And Performance, Victoria University of Technology, Melbourne, Australia, ²Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC, Australia, ³Medical Sciences, RMIT University, Melbourne, Australia, ⁴Exercise Science and Nutrition, Deakin University, Melbourne, VIC, Australia, ⁵Dept. Anaesthesia, Austin and Repatriation Medical Centre, Melbourne, VIC, Australia

Little is known about contracting muscle mass and inactive muscle effects on K^+ dynamics during exercise. We investigated differences in arterial plasma [K⁺] and in the arterio-venous [K⁺] difference across the forearm, during small muscle mass exercise with the forearm finger flexors and large muscle mass exercise during two-legged cycling.

Eight healthy males gave written informed consent. Concentric, dynamic forearm finger flexor contractions were conducted on a custom-built ergometer and comprised three 1-min bouts, then a final bout to fatigue, at their peak incremental finger flexion workrate. After 2 h, subjects underwent two-legged cycling exercise comprising 10 min at each of 33% and 67% VO₂peak, then to fatigue at 90% VO₂peak. Radial arterial (a) and deep antecubital venous (v) blood was sampled simultaneously at rest, before and during each exercise bout and in recovery, for both exercise tests. Plasma [K⁺] was analysed using a K⁺-selective electrode.

During finger flexion exercise $[K^+]_a$ rose only 0.29 ± 0.03 mM to peak at 4.19 ± 0.07 mM at fatigue. The wide negative $[K^+]_{a-v}$ difference during exercise bouts reverted to resting levels postexercise, and to a positive $[K^+]_{a-v}$ in recovery (see Figure). During leg exercise the rise in $[K^+]_a$ at fatigue was ~9-fold greater (2.69 ± 0.28 mM, *P*<0.001), but the peak of 6.66 ± 0.26 mM was only 59% greater than during finger flexion (*P*<0.001). A positive $[K^+]_{a-v}$ difference across the resting forearm occurred during leg exercise, being 0.39 ± 0.04, 0.70 ± 0.08 and 1.50 ± 0.15 mM, at 33%, 67% and 90% VO₂peak, respectively.

Thus despite a large net K^+ release from contracting muscle, $[K^+]_a$ barely rose above rest during small muscle mass exercise. During large muscle mass exercise, $[K^+]_a$ increased markedly, constrained by K^+ uptake into inactive muscle.

Funded by NH&MRC