Intracellular acidosis increases t-system excitability in depolarised muscle fibres of the rat in the presence but not in the absence of chloride

D.G. Stephenson¹, T.H. Pedersen², O.B. Nielsen², G.D. Lamb¹, ¹Zoology, La Trobe University, Bundoora, Australia, ²Physiology, University of Aarhus, Denmark

This study was undertaken as part of an investigation into the mechanism responsible for the marked increase in the excitability of depolarised muscle upon intracellular acidification¹. The preparation used in the study was the mechanically skinned fibre, where the surface membrane is removed by microdissection causing the t-system to seal off and polarize to different levels by placing it in carefully designed solutions. In this preparation all steps in the excitation-contraction coupling process are maintained fully functional² while allowing direct access to the intracellular environment, thus permitting direct control of intracellular pH and the level of polarization of the t-system.

The skinned fibre preparation was obtained from the extensor digitorum longus muscle of adult rats killed by halothane overdose as previously described² and the preparation was placed in a solution mimicking the myoplasmic environment. Action potential (AP) induced tetanic force responses were generated with square pulses of 2ms duration and field strength of 70V/cm at 25Hz for 1s². Alternatively, the voltage sensors in the t-system were activated independently of APs, by replacing all K⁺ in the bathing solutions with Na^{+ 2}. Results obtained in carefully balanced solutions at pH 7.1 and pH 6.6. No pH dependence was observed in voltage-sensor activated force responses that were independent of APs in the presence or in the absence of Cl⁻ or in the AP-induced responses in the absence of Cl⁻ in solutions. However, in the presence of Cl⁻, force responses to APs in the t-system were markedly greater at pH 6.6 than at pH 7.1 when the t-system was depolarized to the same level below about -70mV. These results indicate that Cl⁻ channels mediate the protective effect of intracellular acidosis on AP-induced force responses.

- (1) Posterino et al, J Physiol 527, 131, 2000.
- (2) Nielsen et al, J Physiol 536, 161, 2001.