UTP inhibits store-activated Ca²⁺ influx in HT29 cells

H. Hu¹, P. Poronnik² D.I. Cook¹, ¹Department of Physiology, University of Sydney, NSW, Australia, ²School of Biomedical Sciences, University of Queensland, QLD, Australia

In HT29 human colonic epithelial carcinoma cells, the activation of the M_3 muscarinic receptor by carbachol (CCh) leads to a Ca²⁺ response with a characteristic prolonged plateau phase due to Ca²⁺ influx following Ca²⁺ store activation. The activation of the P2Y₂ purinergic receptor by UTP, however, does not show this plateau phase. The lack of a plateau phase during P2Y₂ stimulation may result from the inhibition of Ca²⁺ influx. Hence, the aim of this study was to investigate whether UTP inhibited store-operated Ca²⁺ influx.

Fura-2 imaging techniques were used to monitor changes in intracellular Ca^{2+} concentration in HT29 cells.

We first used the rate of quenching of intracellular fura-2 by exogenous Mn^{2+} to estimate the activity of the store-operated Ca^{2+} channels. We found that the rate of Mn^{2+} influx during prolonged UTP stimulation was 34% lower than during prolonged CCh stimulation, consistent with UTP inhibiting the activity of the Ca^{2+} influx channels. We then estimated the activity of these channels by using the rate of increase of intracellular Ca^{2+} concentration during re-admission of extracellular Ca^{2+} to cells in which the intracellular Ca^{2+} stores had been depleted by exposure to thapsigargin in Ca^{2+} -free medium. We found that UTP reduced the rate of Ca^{2+} influx under these conditions by 45% compared to the rate of Ca^{2+} influx during re-admission of Ca^{2+} alone, and by 34% compared to the rate observed during the re-admission of Ca^{2+} in the presence of CCh. This also suggested that UTP inhibits store-operated Ca^{2+} influx.

We conclude that UTP inhibits store-activated Ca^{2+} influx channels.