Phospholipase C γ is essential for activation of store-operated Ca²⁺ channels in liver cells

*T. Litjens*¹, *T. Nguyen*¹, *E. Aromataris*¹, *M. Roberts*¹, *G. Barritt*² and <u>G. Rychkov</u>¹, ¹School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA 5005 and ²School of Medicine, Flinders University of South Australia, G.P.O. Box 2100, Adelaide, SA 5001, Australia.

Release of Ca^{2+} from intracellular stores in non-excitable cells results in activation of Ca^{2+} influx through so-called store-operated Ca^{2+} channels (SOCs) on the plasma membrane (Putney *et al.*, 2001). Activation of these channels occurs in response to a decrease in the concentration of Ca^{2+} in the lumen of the endoplasmic reticulum, and it does not depend on how this decrease in $[Ca^{2+}]$ is initiated. The molecular mechanism that underlies this phenomenon is poorly defined. Phospholipase $C\gamma$ (PLC γ) has been previously shown to be either directly involved in activation of SOCs or to modulate their activity through the production of additional IP₃ in a number of cell lines (Patterson *et al.*, 2002). The identity of the SOCs regulated by PLC γ , however, has not been established.

In this work we used short interfering RNA (siRNA) to specifically reduce the expression of the genes encoding PLC γ 1 and PLC γ 2 and whole cell patch clamping technique to measure activation of store-operated Ca²⁺ current (I_{SOC}) in H4IIE liver cells. Immunofluorescence and Western blotting were employed to verify the effectiveness of siRNA and the time course of the knock down of PLC γ .

We have found that transfection of H4IIE liver cells with siRNA against PLC γ 1 results in time dependent reduction of PLC γ 1 protein with maximal effect apparent at 72-96 h. At the same time the amplitude of the I_{SOC} developed in response to intracellular perfusion with IP₃ in cells transfected with siRNA against either PLC γ 1 or 2 has decreased. The average maximal amplitude of I_{SOC} decreased from -3.3±0.2 pA/pF (n=23) in control cells to -2.3±0.3 pA/pF (n=15) in cells transfected with siRNA against PLC γ 1 and to -1.5±0.25 pA/pF (n=13) in cells transfected with siRNA against PLC γ 2 together resulted in further reduction of the current to -0.65±0.17 pA/pF (n=14). Similar results were obtained when thapsigargin was used to activate I_{SOC} instead of IP₃. It is concluded that PLC γ is required for activation of I_{SOC} in liver cells, however, the catalytic activity of PLC γ in this process in not essential.

Putney, J.W., Jr., Broad, L.M., Braun, F.J., Lievremont, J.P. & Bird, G.S. (2001) Journal of Cell Science 114, 2223-2229.

Patterson, R.L., van Rossum, D.B., Ford, D.L., Hurt, K.J., Bae, S.S., Suh, P.G., Kurosaki, T., Snyder, S.H. & Gill, D.L. (2002) Cell 111, 529-541.