
Long lasting muscle fatigue: partial disruption of EC-coupling by the elevated cytosolic calcium during contractions

E. Verburg, T.L. Dutka and G.D. Lamb, Department of Zoology, La Trobe University Bundoora Campus, Melbourne, VIC 3086, Australia.

We have previously shown that a 10s period of very high cytosolic $[Ca^{2+}]$ (20µM) can disrupt excitationcontraction (EC)-coupling at the signal transduction between the t-tubuli and the Sarcoplasmic Reticulum (SR) Ca^{2+} -release channels in the triad junction (Lamb *et al.*, 1995). It has also been shown that the repeated periods of elevated cytosolic $[Ca^{2+}]$ during repeated tetani are associated with reduced Ca^{2+} -release and long-lasting fatigue (Chin & Allen, 1996). It is however unclear how low levels of $[Ca^{2+}]$ can disrupt EC-coupling in mammalian muscle, and what aspects of the increased levels of cytosolic $[Ca^{2+}]$ during contractions are causing the disruption of EC-coupling.

In this study we have used a mechanically-skinned fibre preparation, in which the normal EC-coupling system remains intact. Extensor Digitorum Longus muscles were excised from 4-11 month old Long-Evans Hooded rats that had been killed by an overdose of halothane. Single fibres were dissected from the muscle and skinned. The fibre was then transferred to a solution mimicking the cytosol. Twitch and tetanic force responses were triggered by depolarising the T-system with electrical field stimulation. Periods of elevated cytosolic $[Ca^{2+}]$ were induced by transferring the fibre to a 'Ca²⁺-rigor'-solution containing a set $[Ca^{2+}]$. In this solution no ATP or CrP was present, preventing Ca²⁺-uptake by the SR, and thus applying a homogenous $[Ca^{2+}]$ throughout the fibre. Alternatively, elevated $[Ca^{2+}]$ was achieved by eliciting four or five 50Hz-tetani in the presence of 5 mM Caffeine.

The figure shows that even a concentration as low as 2μ M free Ca²⁺ throughout the fibre can disrupt ECcoupling, with a bigger effect at concentrations that elicit > 90% of maximal force (n ≥ 4 in each case). The time of elevated [Ca²⁺] required for the effect was however quite long, 1 min. Fifteen normal 0.2 s long tetani, or 4-5 tetani with caffeine and 0.2 mM BAPTA present, did not result in a significant decrease in peak tetanic force. However, the total time at high [Ca²⁺] eliciting > 90% force would have been ≤ 2s in the normal tetani. Only in the presence of caffeine, when tetani were at least twice as long as the normal ones and peak [Ca²⁺] in the triad junction probably a lot higher, was EC-coupling partially disrupted. This shows that the [Ca²⁺] has to be raised to a very high level and/or be applied for a relatively long period in order to have a deleterious effect. It also suggests that the relatively high [Ca²⁺] attained locally in the triad junction is more important than the concentration attained in the bulk of the cytoplasm. During normal contractile activity, it can be expected that calcium-induced disruption of EC-coupling would have a significant impact after a very large number of contractions, and hence it may be one of the mechanisms causing the long-lasting muscle fatigue observed after prolonged hard exercise.

Chin E.R. & Allen D.G. (1996) *Journal of Physiology* **491**, 813-824. Lamb G.D., Junankar P.R. & Stephenson D.G. (1995) *Journal of Physiology* **489**, 349-362.