
A current source and a cation conductance are components of an electrical circuit connected across the plasma membrane of the malaria parasite *Plasmodium falciparum*

R.J. W. Allen, K.J. Saliba and K. Kirk, School of Biochemistry and Molecular Biology, Linnaeus Way, Australian National University, Canberra, ACT 0200, Australia.

Like most cells, the intraerythrocytic malaria parasite *Plasmodium falciparum* requires a high intracellular concentration of K⁺ (~135 mM) for normal development. Using ⁸⁶Rb⁺ and the potential-sensitive compound ³H-TPP⁺, we have shown that the parasite's mechanism of K⁺ uptake is electrophoretic, mediated by a pathway with characteristics of a K⁺ channel. The driving force, the parasite's membrane potential, $\Delta \psi$, originates from the extrusion of H⁺ by a (V-type) H⁺-ATPase on the plasma membrane. However, we have also shown that $\Delta \psi$ is modulated (partially offset) by extracellular K⁺, indicating an interdependence between K⁺ influx and $\Delta \psi$.

Investigations into the kinetics of K⁺ uptake have shown that between 5 mM – 130 mM K⁺, the influx of K⁺ remains constant, despite there being a reduction in $\Delta \psi$ with increasing concentrations of extracellular K⁺.

These phenomena may be reconciled by considering the H⁺-ATPase as an 'ideal' current source, and the K⁺ channel as a 'variable' conductance, the latter a function of the extracellular concentration of K⁺ (see figure). In this electrical model, the inward current carried by K⁺ influx through the K⁺ channel, ' I_{in} ', is equal to the outward current carried by the (*net*) export of H⁺ via the H⁺-ATPase, ' I_{out} ' (*i.e.* $I_{in} = I_{out}$). As the K⁺ conductance of the membrane is varied by altering the extracellular concentration of K⁺, the offset to $\Delta \psi$ caused by the influx of K⁺ also varies, so that the equality $I_{in} = I_{out}$ remains satisfied.

Requirement for steady state $\Delta \psi$: $I_{in} = I_{out}$

During its growth phase, the accumulation of K^+ by the parasite is achieved in the context of a >10-fold decrease in the concentration of K^+ (from ~140 mM) within the host red cell (itself a result of the parasite manipulating the permeability of the host cell membrane). The mechanism we describe is able to explain the parasite's ability to generate a stable influx of K^+ , neither overwhelmed by, nor starved of, K^+ , as the concentration of K^+ within the red cell undergoes a dramatic reduction.

Largely on the basis of sequence homology to the canonical selectivity filter of homotetrameric K^+ channels, two putative K^+ channel genes have been identified in the *Plasmodium falciparum* genome database. Hydropathy profiles suggest that both channels have additional transmembrane domains over and above the 6 characteristic of voltage-gated K^+ channels, a feature shared by several members of the 'slo' K^+ channel family. The function of these domains is unknown. Both channels are unusual for their great size (the larger has ~2000 residues per subunit), and have large hydrophilic domains which are predicted to reside cytosolically, the functions of which are also unknown. The larger protein has an 'S4' segment containing 3 regularly spaced arginines, in a pattern consistent with a (perhaps degenerate?) voltage sensor of a voltage-gated K^+ channel. Immunofluorescence studies demonstrate localisation of this protein to be predominantly at the host cell membrane, suggesting that it is not the K^+ uptake pathway in the parasite membrane discussed above, but perhaps plays a role in the alteration of the ionic makeup of the host cell cytosol by the parasite. No data currently exists for the location of the smaller protein. These putative K^+ channels are the subject of continuing investigations.