Digoxin effects on muscle strength, fatigue and \mathbf{K}^{+}fluxes during exercise in healthy young adults M.J. McKennal ${ }^{l}$, S. Sostaric ${ }^{l}$, M.J. Brown ${ }^{2}$, C.A. Goodman ${ }^{l}$, X. Gong ${ }^{1}$, A.C. Petersen ${ }^{1}$, J. Aw ${ }^{3}$, J. Leppikl , C.H. Steward ${ }^{l}$, S.F. Fraser ${ }^{4}$, R.J. Snow ${ }^{5}$ and H. Krum ${ }^{3}$, ${ }^{1}$ Muscle, Ions and Exercise Group, School of Human Movement, Recreation and Performance, Centre for Ageing, Rehabilitation, Exercise and Sport, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia, ${ }^{2}$ Department of Anaesthesia, Austin Health, Heidelberg, VIC, Australia, ${ }^{3}$ Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC, Australia, ${ }^{4}$ School of Medical Sciences, RMIT University, Bundoora, VIC, Australia and ${ }^{5}$ School of Exercise Science and Nutrition, Deakin University, Burwood, VIC, Australia.

The $\mathrm{Na}^{+}, \mathrm{K}^{+}$ATPase enzyme constrains muscle K^{+}loss and Na^{+}gain and is vital for skeletal muscle contractility, but our recent studies have found that maximal $\mathrm{Na}^{+}, \mathrm{K}^{+}$ATPase activity is depressed with fatigue. We investigated the effects of the specific $\mathrm{Na}^{+}, \mathrm{K}^{+}$ATPase inhibitor digoxin on muscle strength, fatiguability and performance; and on K^{+}fluxes across active and inactive muscles during exercise.

Ten active, but not well-trained healthy volunteers ($9 \mathrm{M}, 1 \mathrm{~F}$), with normal ECG, plasma electrolytes, renal function, and no history of adverse cardiovascular events gave written informed consent. A series of exercise tests were performed after taking digoxin (DIG, $0.25 \mathrm{mg} . \mathrm{d}^{-1}$) or a placebo (CON) for 14 d , in a randomised, counterbalanced, cross-over, double blind design study, with trials separated by 4 weeks.

Quadriceps muscle strength (peak torque at $0-360^{\circ} / \mathrm{s}$) and fatiguability during 50 maximal contractions (fractional decline in peak torque at $180^{\circ} / \mathrm{s}$) were measured on day 13 on a Cybex isokinetic dynamometer. All subjects performed incremental cycle ergometer exercise to measure $\mathrm{VO}_{\text {2peak }}$ and to determine 33,67 and 90% $\mathrm{VO}_{2 \text { peak }}$ work rates. Subjects also performed an incremental test using concentric, dynamic finger flexor contractions to determine their peak work rate ($\mathrm{WR}_{\text {peak }}$). On day 14 subjects completed two invasive trials separated by $\sim 2 \mathrm{~h}$. A finger flexion exercise trial comprised three 1-min bouts, then a final bout to fatigue, at $100 \% \mathrm{WR}_{\text {peak }}$. Two-legged cycling comprised 10 min each at 33% and $67 \% \mathrm{VO}_{2 \text { peak }}$, then to fatigue at 90% $\mathrm{VO}_{2 \text { peak }}$. Radial arterial (a) and deep antecubital venous (v) blood was sampled simultaneously at rest, before and during each exercise bout and in recovery, for both exercise trials.

Serum digoxin was $0.7 \pm 0.2 \mathrm{nM}$ at day 13 and $0.8 \pm 0.2 \mathrm{nM}$ at day 14 (Mean \pm SD) in the DIG trial, and < 0.4 nM for CON. Muscle peak torque and the fatigue index (CON 0.57 ± 0.10 vs DIG 0.54 ± 0.09) were unchanged by digoxin. Time to fatigue during finger flexion exercise was not significantly affected by digoxin (CON 236 ± 211 vs DIG $157 \pm 118 \mathrm{~s}, \mathrm{n}=9$). During finger flexion exercise, each of $\left[\mathrm{K}^{+}\right]_{\mathrm{a}},\left[\mathrm{K}^{+}\right]_{\mathrm{v}}$ and $\left[\mathrm{K}^{+}\right]_{\mathrm{a}-\mathrm{v}}$ were greater with exercise in CON (by $0.37 \pm 0.21,1.29 \pm 0.84$ and $-0.89 \pm 0.69 \mathrm{mM}$), and similarly with DIG (by $0.34 \pm 0.36,1.12 \pm 0.87$ and $-0.69 \pm 0.69 \mathrm{mM})$. The unchanged $\left[\mathrm{K}^{+}\right]_{\mathrm{a}-\mathrm{v}}$ suggests unaltered K^{+}release from contracting muscles with DIG. Time to fatigue during leg cycling exercise was not significantly affected by digoxin (CON 254 ± 125 vs DIG $262 \pm 156 \mathrm{~s}$). During leg exercise, each of $\left[\mathrm{K}^{+}\right]_{\mathrm{a}}$, $\left[\mathrm{K}^{+}\right]_{\mathrm{v}}$ and $\left[\mathrm{K}^{+}\right]_{\mathrm{a}-\mathrm{v}}$ were greater with exercise than at rest in CON (by $2.51 \pm 0.83,1.22 \pm 0.52$ and $1.29 \pm 0.68 \mathrm{mM}$), but none were modified by DIG (by $2.62 \pm 0.57,1.18 \pm 0.73$ and $1.43 \pm 0.78 \mathrm{mM}$). The unchanged $\left[\mathrm{K}^{+}\right]_{\mathrm{a}-\mathrm{v}}$ suggests unaltered K^{+}uptake by inactive muscles with DIG.

In summary, DIG at therapeutic levels did not adversely affect muscle performance, $\left[\mathrm{K}^{+}\right]$or K^{+}fluxes during exercise in healthy young adults. Whether this reflects inadequate digitalization, a safety tolerance to small reductions in functional $\mathrm{Na}^{+}, \mathrm{K}^{+}$ATPase, or limited adverse effects of digitalization when muscle $\mathrm{Na}^{+}, \mathrm{K}^{+}$ATPase is normal (i.e. high) is unclear.

Funded by NH\&MRC.

