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Summary muscle. In the 1960s it was understood that “a switch”

o ) o ~ allowed the action potential that weled along the
1. Excitation-contraction coupling is broadly defined,snserse (t) tublar irvaginations of the suake

as_the process linking the action potential to contrac'gion Hembrane to release £drom the sarcoplasmic reticulum
striated muscle, or more nawly, as he process coupling (sR). Nothing was known of the molecules or signalling
surface membrane depolarisation to?Ceelease from the gystems inolved. It was established during the 1970s that
sarcoplasmic reticulum. o _ _ EC coupling differed in the heart and iretdtal muscle and

2. We row know that excitation-contraction coupling that the switch in cardiac muscleasvsimply the entry of
depends on a macromolecular protein comple“calcium  owernal C&*. There vas a hot debate hever about the
release unit”. The compteextends the extracellular spacensiyre of the switch in skeletal muscle, whether ésw

within the transverse tubule viaginations of the suaceé chemical, mechanical or electricalhe 1970s also sathe
membrane, across the traesse tubule membrane into thedisccvery of a tiry electrical “chage maement” which

cytoplasm and then across the sarcoplasmic reticulu@fected the meement of a dipole in the t-tuite

membrane and into the lumen of the sarcoplasmigemprane that was linked to, and preceded; @dease.
reticulum. The charge meement was likened to auer that pulled a

3. The central element of the macromoleculapy,q from the terminal cisternae to dump?Cinto the
compl is the ryanodine receptor calcium release Cha””ﬁ{yoplasm. The molecule that generated the ajer

in the sarcoplasmic reticulum membrane. The ryanodiR§oement was thought to be the ditiropyridine receptor
receptor has recruited a saté membrane L-type calcium DHPR) L-type C& channel. The >2 million dalton

channel as a ‘ditage sensor” to detect the action potentigh anodine receptor (RyR) &a release channel ag
and a calcium binding protein “calsequestrin” to detect ifentified in the 1980s. Expression of recombinant proteins
the ewironment within the sarcoplasmic reticulum.;; pHPR- or RyR-null cells in the late 1980s and 1990s
Consequently the calcium release channel is able to respeagfirmed that ther, sutunit of DHPR and the RyR were
to surface depolarisation in a manner that depends on & ential for EC colupling. In the following decade/ess
Ca* load within the calcium store. L interactions between the proteins/ddeen defined and the
4. The molecular components of the "calcium releasgery important role of associated proteins recognised. It is
unit” are the same in skeletal and cardiac muscle. Th@|onger thought that the DHPR and RyR transiently
mechanism of excitation-contraction coupling isvBeer  connect after an action potential. Ratteefightly coupled
d|fferent._The S|gnal _from theoltage sensor to ryan_odme macromolecular compieis thought to respond to changes
receptor is chemical in the heart, depending on an influx @f sy rface membrane potential in a manner that is highly
+ .
external C&" through the sueice calcium channelin g jated by cytoplasmi@ttors and by the Gtload in the
contrast conformational coupling links the voltage sens@r The molecular compleextends from the saracellular
and the ryanodine receptor in skeletal muscle. space into the lumen of the SR, spanning the ukubnd

5. Our current understanding of this amazinglysg membranes and the junctional gap between them. The
efficient molecular signal transduction machine hagved RyR is coupled to the II-Il and II-IV ytoplasmic linker

over the past 50 yearsNone of the proteins had been|oons and C-terminal tail of the, ¢ sutunit of the DHPR
identified in the 1950s —_mdeed therQSNdebate ab_out and to the solublg, suhunit. Among the manproteins that
whether the molecules valved were in &ct protein. agqociate with the cytoplasmic domain of the RyR and
_Neverth_eless a multitude of questions about_ the moleculﬁégmate its actity are the critically important FK506
interactions and  structures of the proteins and thelging proteins, anchored kinases, calmodulin, Homer and
interaction sites remain to be answered andvijeoa mempers of the glutathione transferase (GST) structural
challenge for the next 50 years. family. Glycolytic enzymes are abundant around the
complex. Within the SR lumen, the RyR communicates
with the calcium binding protein, calsequestrin (CSQ), with
The past 40 years W@ sen an explosion of the CSQ anchoring proteins triadin and junctin, with a
information about the molecular components of ynegil  histidine rich protein and with GSTs. The ait}i of the
processes includingxeitation-contraction (EC) coupling channel is modulated by phosphorylation and oxidation.
which controls C# release and triggers contraction inThe compl& not only regulates Cé release from the SR,

Introduction
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Excitation-contraction coupling

but dso C&* influx from the extracellular eironment confirmed thatt-tubule continuity was essential for the
through the DHPR and store-operated calcium entgction potential to initiate contractiGi.
(SOCE)-like channels.

Excitation-contraction coupling #'f &

In the “big picture”, EC coupling refers to the proced" _‘ i '
or processes that couple an action potential (excitation)w . = &
cross bridge cycling and contraction (shortening or for {;’ﬁ =3

development) of the striated muscle fibre. Inekkal "“g, !
muscle, the action potential is initiated in the brain and #-
transmittedvia sequential electrical and chemicaleeats . F*‘

through the spinal cord, motor nenend neuromuscular, "
junction to the muscle fibreln the heart, the action _,ﬁ v
potential is initiated in local pacemak tissue and ot L

propagites throughout the myocardium by electric: ‘}e_w‘ e 1,,’;,
transmission through gap junctions. The term EC coupli ¢ * 4% ‘-.li;’:‘f qﬁ:{“-k*h}v
has @olved narrowly within the muscle field to encapsulate™ =~ T T
the processes that intervene between depolarization of
surface/transerse (t-tubule) membrane and calcium relea
from the internal calcium store, the SR.

+

jﬂ%ure 1. An dectron miciograph of a section tlmugh a

triad junction of a fog tonic fibre, s1owing a central t-tub-

lar element flan&d on either side by a terminal cisternae

In the 1960s element of the sarcoplasmieticulum. Therrows point to

electon dense junctional feet spanning the junctional gap

Early in the 1960s, the most pressing questi@s W on either side of the t-tulte between the t-tubule and termi-

howv an ation potential on the surface could initiatenal cisternaeNote the ope-like gructures within the termi-

contraction within only 1 to 2ms in the centre of fibres thaia| cisternae — later identified as the calcium binding-pr

were 50 to 100um in diameteDiffusion of an actiating  tein, calsequestrin. Miograph kindly povided by Claa
factor (C&*) from the surdce to the centre of the fibre Franzini-Armstrongmodified fromt©

would tale hundreds of ms! The answer to this basic

guestion had been indicated by the pioneering work of _

Andrew Huxley and co-vorkers which showed that there Progress during the 1970s
were discrete “hot spots” on the sagé of the muscle fibre
which had a leer stimulus threshold for contraction than In the early 19705 thereas muph c_iebat_e apout the
other aread? They concluded that the *hot spots” Werenature of transm|§5|on across the triad junction elethl
associated with some component of the “triads” describ scle. Compellingaguments were made for each of

in the SR that might conduct membrane depolarisatioﬁ emical transmission, electrical transmission and for a
inwards. Thesehot spots were later sha to be the mechanical coupling process. Electrical transmissias w

entrance to the fine network of transverse (t-)ulked eliminated Ia_lrgely because the membrane capacitanse w
radiating from the fibre suate? The t-tubules ensured thattoc.)tﬁma”éo include t?eery Iarge atlrr:ouln(; ct>f SR rtnhembrafne
no part of the fibre interior was more than 1uM from &Wl surace area ol approximately 'mes he ae
membrane that was continuous with the atef membrane. membran¥). Chemicatransmission was gued against at

It was soon shen that the t-tubule membrane as/ this time because of the lack of a suitable candidateis

electrically continuous with the fibre surface and it echanicalltransmission throug_h the junctional fealsw
detailed electrical characteristics defifgd. avoured, with a model of a series olées connecting a

Electron microscopalso razealed a tight connection voltage sensor in the t-tuke membrane with a calcium

between the t-tubule system and thgamded terminal release pathway in the SR membrane (Figure 2).

cisternae sacs of the SRince there were 3 elements, a t- h Tthe_ 1t£_)70sf ?: aaﬂreflne(rjn;a?tbolf the t()electrlcal
tubule flanled on either side by a terminal cisternu aracterisation of the sade and t-tubule memoranes, an

(Figure 1), this junction between the external and intemapderstandmg of their pass ad vqltage—depepdent lonic
membrane systemsas aptly named the “triad junctiof”. conductances and the diseny that, in mammalian muscle,

A remarkable feature of the triad junction was periodi(c‘hlorlde ions are astdly transported. Freeze-fracture

electron densities spanning the 10nm junctionabgelectron—mlcroscqp revealed  the  contribtion  of

between the cytoplasmic leaflets of the tfisband SR indentations or caolae on the suatce of the muscle fibre
membranes. Theriad junction and the “junctional feet’ to membrane area, mechanical plasticity and a conduit to

~ 13
were thought to facilitate EC coupling because of the}Pe t-tubule systertf:' In contrast to the much quoted

stratgic position and the close proximity of the internal angPassve (_istrlbgtlon of chloride 1ons 1n amphlb}an ml.JSde’
external membranes. A novel technique, “glycerol chloride ions in mammals are not in equilibrium with the

treatment”, osmotically “sered” the t-tulnle system from resting ”‘emb“’?‘”i potential, and thus contribute to the
the surbce membrane, abolished EC coupling anEFStmg potentiat’ In both species, the chloride
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Figure 2. A model for the mechanical mechanism of EC coupling in skeletal muscle developed in the 1970s. The position of
a lewer that extended from the t-tlk to the terminal cisternae of the SR, is altered by an action potentialhirasney

that a plug is emored from a pag in the terminal cisternae membrane and?Cions flow out to activate the coattile

proteins.

conductance was found to be located mainly in the taildb capacitve arrents generated by the voltage pulses.
membrané® The disceery of gating currents provided a
During this period, the slletal muscle t-tulde conceptual leap for EC coupling. The current ielstal
membrane s identified as a rich source of L-type calciunmuscle fibres was too sloto gate the wltage-dependent
channel protein, later known as the yallopyridine Na' channel. Itpreceded C# release from the SR, its
receptor (DHPR). The-fubule membrane was used as aoltage-dependenceas compatible with EC coupling and
source of this protein by biochemistséstigating wltage- it was abolished by glycerol-treatméf€® Further
dependent G4 channels. ltsignificance for EC coupling evidence for its role in EC couplingas provided by the
was overlooked. fact that differences between theltage dependence of EC
In 1973, a nee and tiny electrical signal was coupling in fast- and ske-twitch fibres was reflected in
discovered in squid giant axon membrari€d’ The signal chage maement (Figure 3f: The gating current as
preceded the voltage-dependent Marrent that underlies thought to be the nvement of charged residues within the
the action potential in most neurones. Its\atittn and t-tubule membrane and to reflect a voltage-sensor response
inactivation characteristics suggested that it reflected dn depolarisation that initiated EC couplinghe ting
event within the membrane, that gated the' Whannel and current vas the “engine” driving a mechanical EC coupling
had been predicted more thanotwlecade before by mechanism.
Hodgkin & Huxley.'® The “asymmetric capacie aurrent” At the same time as theaafing current work, it &s
or “charge mgement” was also named a “gating current’discovered that EC coupling #&s sensitie ©
The very small size of the signal (pA) and its compledihydropyridine based compounds that were also agonists
electrical behaviour provided a major technical challenger antagonists of the DHPR €achannef?23 This and
for researchers who, at that time, designed anlil tmeir additional evidence that theaiing current arose from the
own dectronic equipment.Some of the first laboratory DHPR42?% |ed to the hypothesis that the DHPR was the
computers were used to generate the complains of voltage sensor for EC coupling.
pulses, signal subtraction and signe¢raging required to Another fact that became established during the
dissect the capaoi® cating current from other ionic an 1970s was that tw basically different processes triggered
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Identification of molecular entities in the 1980s

A 25 - A breakthrough early in the 1980s was the
. identification of the eluse R calcium release channel as a
= 20 very high molecular weight protein with a highfiaity for
= ] the plant alkaloid, ryanodin&:33 The protein was found to
fci 15i be a homoteramer oftb60 KDa subnits. Three
210 mammalian genes were identified, encoding thelesal
I ] muscle ryanodine receptor (RyR1), the cardiac muscle
O 54 soleus ryanodine receptor (RyR2) and a RyR3, which although
1 initially identified in the brain, is not foundk&usively in
0- : T ‘ T ‘ w that tissue. The 3 isoforms argpeessed in a variety of
-80 -40 0 40 . . : . s
B membrane potential (mV) fussues either alone or in vanous_combmauoDsfferent
isoforms of the RyR arexpressed in other vertebrate and
1.2 invertebrate species.
S 1.0 Elegant  electron-microscop provided further
2 0 8: evidence for mechanical EC coupling inesiktal muscle.
2 7T RyRs were seen in a 2-dimensional crystal in the junctional
2 06 face membrane and RyR tetramers were strictly aligned
% 0_4: with four DHPR molecules (a tetrad) in the opposing t-
= 1 tubule membrané* Curiously hevever, only every second
0.2 RyR is associated with a “tetrad”. The functional
0.0 =’ ‘ ‘ significance of this mismatch is not understoad, lias led
-60 -40 -20 0 to the lypothesis that there may be cross-talk between

membrane potential (mV) RyRs that are coupled to DHPRS and those that are not.

The strict alignment of the DHPR and RyR does not exist in
cardiac musclelndeed, the DHPR/RyR ratio of 0.1 to 0.25

Figure 3. Similar voltage-dependence ofharge novement
g 4 P g in the heart is considerablywer than thed 2.0 in sleletal

(A) and EC coupling (B) in fast-twhcextensor digitorum 1635
longus (e.d.l.) and slow-twicsoleus muscle fibres. EC musc%] linid bil techni first din th |
coupling in this case was measured as the amplitude of K e lipid bilayer technique (first used in the early

6 . . i
contractues, i.e the tension response to rapid ionic depo-1960§ ) was reived to dlow recording of currents fleing

larisation of the t-tubule membrane in very small bundles g?r(_)ugh |nd|v_|dual RYR molgculgs?rhe RyR channel is
muscle fibes. Thevoltage br half maximum carge move- cation selectie and poorly discriminates between mono

ment wad}+40mV in soleus and20mV in ed.l. Similarly and avaent catio_ns3,.7 The channel readily opens o a
the voltaye br half maximum tension iS-38mV in soleus range of _submaxmal conductar_lc_evele_, whose py_sucal
and 20mV in e.d.l. correlate is still debated. The lipid bilayer technique has

since been usedkensvely to define the effects of mgn
modulators on channel activity and remains the preferred
C&* release from the SR in cardiac and skeletal mustle. technique for examining the adty of ion channels in
was acknavledged that the trigger in cardiac musclasw internal membranes that are not accessible to patch
the C&" that crossed the surface membrane during thgamping.
action potential, through the DHPR Lachannel, In The DHPR was found to consist of 5 aulis, the
contrast “C&' release from the SR of fasted&tal muscles membrane-spanning,, y, and & sulunits, a gtosolic 8
is initiated by the depolarisation of the transverseulesh suhlunit, an atracellular a, sutunit which is disulphide-
through a process about which the only established findifigked to thed subunit®® The a, sulunit consists of 4
is that it does not require &a26 repeats of a transmembrane domain containing 6 membrane
A significant discoery during the late 1970s and spanning helices (characteristic of surface membrane
early 1980s was the inositol 1,4,5-trisphosphate,) (IPvoltage-dependent cation channels), which form thé* Ca
signalling pathway and its presence irlskal muscle and ion channel and the voltage sensor for EC coupling.
location in association with the t-tubule membrdh&hus Several isoforms of the protein were identified, including
the chemical transmission theory for EC couplingsw skeletal @9 and cardiacg, ) isoforms.
revived with IP, as the transmitterThe involvement of 1B The typothesis that the DHPR is the voltage sensor
and the IR receptor in skeletal EC coupling a& for EC coupling was pren with the identification of a
passionately debated forveeal years before a generalnaturally occurring DHPRu,cnull dysgenic mouse that
consensus was reached that ythevere not major died at birth®® Various constructs of DHPR could be
determinant$® It was disceered much later that Ifplays expressed in cell lines or myotubes ded from this
a very important role in nuclear signalling in musg€le. mouse. Dysgenicells lacked EC coupling and char
maovement, lut both phenomena were restored when the
cells were injected with cDAl encoding thea, subunit®
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Figure4. The A and Cegons of the II-1ll loop of the DHPR, defined by el-Hayedt al*® are wnderlined. Rrts of the C
region are essential for skeletal EC couplit§ The smaller part of the Gegon required for skeletal EC coupling is indi-
cated by the bold underline and important residie&39, Phe741, Pro742 indicated by arrows.

Skeletal EC coupling (proceeding in the absence of amgion of the lood'!in residues 725 and 742 (Figure 4), and
influx of external C#' ions) was seen when but nota, .,  specifically residues 734-7481n addition, the isolated II-

was expressed. Chimerasf a,4 and o, shaved that a Il loop actvated isolated RyRsn vitro and a strong
skeletal sequence in the cytoplasmic loop between the nteraction between the Agin (residues 671 — 690) of the
and 3% membrane spanning gments (lI-lll loop) vas II-lll loop and the RyR3** and weaker more comple
essential for skeletal EC couplif). interactions were identified with the essential C reddf.

] ) ] The deelopment of a RyR1 knockout mouse (the
An explosion of information between 1990 and 2005 dyspedic mouse) and a double/RyR1 knockout allwed

expression of arious RyR constructs an@nousa,/RyR1
combinationg’” It was found that both the sletal o

Once the major proteinsvidlved in EC coupling sulunit and RyR1 are required for propergeting of
were identified, experiments turned to defining th®HPRs into tetrads that are aligned with RyR in the SR.
molecular interactions between the proteinFhese Skeletal EC coupling did not proceed if the proteins were
experiments proceeded ondvironts. In the first approach, mis-aligned or mis-tgeted. The discorery of bi-
transgenic cells were used topeess wild-type and directional signalling between the DHPR and RyRvedid
modified DHPRa, suhunits or RyR constructs and then tod dstinction between mis-alignment and interruption of EC
explore the oerall EC coupling processn vivo. The coupling. Onearm of the bi-directional coupling is the
approach had the advantage of being able to examine thghograde” EC coupling process. The second arm is a
physiological process, but did not look at moleculafretrograde” signal in which the coupling between the
interactions per se. On the other hand, interactions betwd@HPR and the RyR dramatically increases the size of the
the isolated proteins or protein fragments werrgnedin ~ L-type C&* current!® Thus a large L-type CG& current
vitro. This second approach identified precise moleculgcorded at the same time as a smakteraal
events, but could not>amine physiological EC coupling. C&*-independent G4 release implies correct geting of
Our current understanding is a composite of results frofie DHPR and RyR, but defeei EC coupling.

(a) EC coupling

both types of experiment. In vitro studies shwed that there was little isoform
The whole cell studies with recombinant proteinspecificity in the interactions between fragments and the
shoved that the residues within the DHPR II-lll loopRYR (i.e.als oralc fragments interacted with both RyR1

required for skletal EC coupling were localised to the cand RyR29). Therefore some residues that appeared
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Figure 5. A model illustrating the many ptein/potein interactions that contribute to the marolecular compbe that
forms the calciumalease unit of skeletal muscle SR. The afrhe comple is the DHPR/RyR/triadin/junctin/CSQ inter
action whit provides continuity from thexéracellular space (lumen of the t-wik) to the lumen of the SR. Irdetions
with other cytoplasmic components that also alter EC coupliagnaicated on the lower right hand side.

critical for sleletal EC coupling in intact cells were likely toelectronmicrographs of the gap.
be critical for tageting, rather than for a functional More recent whole cell studies e atempted to
interaction. Neertheless, substitution of cardiac forlocate sites of molecular interaction between the DHPR and
skeletal residue at position 739 ofedstal a, II-lll loop  RyR using nwel techniques such as fluorescence resonance
modifies both EC coupling and interactions with thenegy transfer (FRET) and metabolic bigtiation 535
recombinant IlI-Ill loop or shorter loop peptides, indicating’hese studies agn confirm the IlI-1ll loop interactions and
that thein vitro interactions reflect some aspects of EQrovide promise for a more detailed whole cell picture in
coupling in myotube®’ the future.

Identification of critical residues in the II-1ll loop has .
proceeded more readily than the identification of thefp) the macromolecular EC coupling complex

binding partners in the RyR. Indeed only deletionsesfyv It is now evident that the DHPR and RyR form the
large regions within the RyR1 ta successfully altered EC hub of a huge macromolecular comple dso termed a

coupling, with finer deletions or substitutions yieIdingCa2+ release unit — with interactions between agdar
results that impl_y that seral reg?ons of thel RyR are number of proteins each of which impinges on theral
probaltily mt/)olved N a_complre_coupllng prclcterftéel i EC coupling process (Figure 5)n particular there are

. IS becoming Increasing apparen 58 SIS interactions in the lumen of the SR, between the soluble
in the DHPR, in addition to the II-1ll loop, contribute to theCa2+ binding protein (calsequestrin — CSQ) ana tsmall
overall DHPR/RyR interaction. These include fsubunit, membrane spanning proteins (triadin and junctin) that bind

- R i i 52
t_Pr? IIIﬂI]V loop ?nd_ tthe C ttirr?ltnal d?ma|_n Sf e s ¢ to CSQ and to the RyR in a quarternary CSQ, triadin,
us the current picture is that thetaplasmic domains o junction, RyR complbe (Figure 5) that forms a “luminal

the DHPR and RyR closely entwine in the junctional 9ap 182+ transduction machinery”"This machinery is vital for
form  the  foot  structures  that  characterisg, .y ation of EC coupling to conserca?* in the SR C&
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A.F. Dulhunty

Substate opening

A control

nt!!hq I .i Ol
! | o
T m. esdhe ¢
‘ 5pA
B cLic2 250m
L
| IAI TP P AP P L d Ll il 4oy | N
[l it
7 e WWWWW'WMJW 4 WMMMNWWWW

Figure 6. Substate activity and coupled gating of RyR2eahanced by 0.5M CLIC-2 Chloride Intracellular -Channel

- 2). CLIC-2 does not form a Cthannel under the conditions of thigperiment, and is a member of the GST stradtur
family. Control channel activity is shown imj. Afterexposue to ALIC-2 (B), the number of openings to the maximum
conductance decreasedjtithee was an inceasedfraction of openings to submaximal conductance levels, in this case
between 20% and 40% of maximu¥fery strongly coupled gating of 3 RyR channels also in the presenceuM CR2C-2

is shown in C). Several coupled openings to 3 times the maximum single channel current precedeldregat single
channel opening Note closures to a substate level during the long opening)in (

store®® determined, but may hold theek b understanding the
There is insufcient room here to document all of thenature of substate opening.
protein-protein interactions that Ve been reported to be Subconductance opening is also characteristic of the
associated with the €arelease unit.Several of the more interaction between the RyR and a peptide corresponding to
important include the FK506 binding proteins, FKBP12 ithe etreme 19 residues in the C-terminal tail of the RyR.
skeletal muscle and FKBP12.6 in cardiac muscléhis Our results suggest (a) that the C-terminal tail may be
small protein is vital for co-ordinating opening of RyRinvolved in interactions between the four snits of the
channels to their full conductance — its remlaesults in RyR and that the suhbits are disrupted when the intrinsic
stabilisation of substate adgty with long channel openings C-terminal tail is replaced by the tail peptide and (b) that
to levels that are approximately 25%, 50% or 75% of théhe structure of the RyR C-terminal tail has features in
maximum?®® In addition, the FKBPs Iva keen reported to common with the T1 domain obitage gated Kchannels
facilitate coupled gting in which 2 to 4 RyR channels openand that the RyR tail may W& function in common with
and close simultaneousiy Curiously we havefound that T1  (Pouliquin, Casarotto, Hagy & Dulhunty,
other associated proteins belonging to the glutathionmpublished).
transferase (GST) structural family (withveeal members Several other protein/protein interactions thatveaa
strongly expressed in muscle), induce substateigcind major impact on RyR channel gatingvleabeen reported
enhance coupledatjing in the same manner as FKBP12vith calmodulin and with a calcium calmodulin kinase in
removal (Figure 6)°® The way in which these twvastly skeletal muscle® and protein kinase A in cardiac muséde.
different proteins interact with the channel compte There are reports of RyR/DHPR — dependent interactions
influence subconductance activity remains to beith other proteins in the t-tube membrane including a
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excitation-coupled CH entry pathwy®® and a store determine whether the loop adopts a different structure

operated C# channefF? when it binds to the RyR.
(c) RyR and DHPR structure (d) Polymorphisms in G4 release unit proteins and muscle
disease
Like most ion channels, both the DHPR and the RyR
have duded crystallization and high resolution X-ray The classical muscle disease that is diohkio a

analysis. Elgant cryoelectron microscopic studies withmutation in the RyR1 is malignant hyperthermia (MH),
particle analysis ha revealed the werall profiles of the which was identified in the 19605and has been much
DHPR and the RyRThe structure of the RyR, solved at astudied in the R615C pig model. The MH mutation leads to
[BOAC resolution in 2000, sheed the four subunits, a g lethal excess Carelease under stress and in the presence
cytoplasmic foot and a narrower transmembranef inhalation anaesthetics (halothane) and muscle relaxants
assembly364 Several sub-domains were identified in the(succiryl choline). There are mo a pethora of
cytoplasmic parts of each auhit. One region (domain 6) substitutions or deletions in the RyR which lead to MH
that extends furthest wards the t-tubule membrane is asymptoms of &rious seerity, to central core disease (CCD)
likely candidate for a part of the DHPR/RyR interactiorand multi mini core disease (MMCD). Three regions of the
More recently structures @ been obtained with higher RyR are susceptible to these mutations which are clustered
resolution that provide much greater détif and in N-terminal (1-614), central (2129 to 2458) and C-
secondary structural elements within the f8ré recent terminal (3916 to 4973) gions of the protein.
X-ray analysis of a 2-dimensional RyR crystal provided &ubstitutions in one residue in the DHRR Ill-1V loop
structure with a resolution of about 30DAhat basically also produces symptoms of MH. More recently it has been
agreed with the cryoelectron microscopic images ardiscovered that polymorphisms in the corresponding 3
shaved clear interactions between domain 6 of adjacerdgions of the cardiac RyR lead to artimias and sudden
RyR tetramers, suggesting that this domain may not ontardiac death.A mutation in cardiac CSQ produces the
interact with the DHPR but also subserewupled @ting same phenotypeCuriously dmost 50% of cases of MH,
between RyR channet8. Homology modelling has CCD or MMCD hae rot yet been linkd to a specific gene
provided an indication of secondary and tertiary structuresnd it is likely that theg will eventually be linled to a gene
of some of some of the RyR domaffis. encoding one of the Earelease unit proteins. There is

Binding sites on the 3 dimensional profilevbdeen evidence that the N-terminal and central mutation-
identified for segeral compounds including FKBP12, susceptible regions participate in an inhibitory interdomain
calmodulin, imperatoxin # as well as the location of interaction within the RyR which is interrupted by the
regions of major diergence between the three mammaliamutations to lead to excess channel actifty.
RyRs/® These binding sites alled mapping of regions in Another genetic disordeninlving RyR1 is myotonic
the linear sequence to domains in the 3 dimensional profit;stroply (DM), which is a debilitating multisystemic
since binding sequencesvieabeen identified in separate disorder caused by a CTG repeat expansion in the DMPK
studies. (myotonic dystropy protein kinase) gene. Aberrant

In a different approach, the structures of smallesplicing of sgeral genes including RyR1 contributes to
regions of the DHPR ha& been solved using nuclear symptoms of DM1, with juvenile spice variants being
magnetic resonance (NMR). The advage of this expressed in adult muscfé. We found that the jusnile
technique is that it provides atomic structure with very higépice variant of the RyR1 channel is lessvacthan the
resolution (1A). Thedisadwantage is that it is ffctively — adult variant, perhaps contributing to reduced muscle
limited to small portion of proteins with less than 20Gctvity in DM. We row have evidence that the splicing
residues. W have used the technique to selvthe region is also in part of an inhibitory interdomain
structures of peptides corresponding to the A andg®me interaction rgion and that this interdomain interaction is
of the DHPRa 4 II-11l loop and to sole the structure of the stabilised in the juenile spice variant of RyR1 (Kimura and
full-length loop (Figure 73>7173 The results she, Dulhunty unpublished). Theinter domain interaction
reassuringlythat the structures of 20 residue peptides adepends critically on a sequence of basic residues
the same as the structures of correspondiggme in the (EERTKKKRK) adjacent to the splicing gion. Thereis a
full 1I-11l loop. However, the only highly structured géon  curious similarity in structure and sequence between these
of the loop is the A region, which although it interacts witmesidues in the RyR and a sequence in the A region of the
the RyR, has not been found to be major player in ECHPR II-lll loop (EERKRRK; Figure 4 ah@), which
coupling. The remainder of the loop, including the suggests that the Agmn binding partner in the RyR might
essential C mon is unstructured. Although initially also be the binding partner in the interdomain interaction
surprising, it might well be that a random coil structure igwolving the splicing rgion (Kimura, Casarotto and
important for a region that has to bexitde and to rapidly Dulhunty, unpublished). Itis particularly interesting that
change its conformation in response to a signal from thise same sequence of basic residues are a part of the
voltage sensor (Cui, Casarotto & Dulhuntypublished). binding site for the3la subunit of the DHPR which also
The importance of intrinsically unstructured proteins isontributes to skletal-type EC couplingg We ae
increasingly recognised. Our future studies will currently exploring these interactions.

8 Proceedings of the Australian Physiological Society (2@J6)



A.F. Dulhunty

Figure 7. NMR solution structe of he DHPRa 4 II-1ll loop. The A, B, C and Degons correspond toegons given in
Figure 4 bove The essential central residues (734-748} an the central part of the Cegon. Theonly strongly struc-
tured part of the loop is the N-terminal égon. Theremainder of the loop is random coil (CuiRarunasekaa Y, Harvey
PJ, Board PG, Dulhunty AFCasarotto MG, unpublished data).

(e) Proteins in EC coupling as a therapeutiogir

The essential nature of EC coupling in the heart ai
in skeletal muscle raises the possibility of using the E
coupling proteins as therapeutic gats for muscle
weakness associated with aging or myopathies and in he
disease. W ae currently deeloping compounds with
structures based on the Agien of the II-Ill loop (Figure 8)
for use both asxperimental tools and as therapeutic agen
to boost or inhibit the activity of the RyR. Sarfwe hae
shavn that attaching lipid tails to the A peptides shown i
Figure 8 substantially increases the membrane permeabi S
of the compounds and iradt enhances their interactions
with RyRs/® but the modified peptides a a aleterious A1 A2 A1 (D'R1 8)
effect on membrane potential.8/re nav using a diferent
approach with synthetic compounds that mimicking pepti quences corresponding to theetjan of the DHPRu
structure. Neitherthe lipid conjugated or the synthetic“_III loop. The native A egon (A1) is compaed with t%]se
compounds shw the strong isoform specificity thatowld S687A substituted peptida2) and a peptide in whicthe
be desirable for therapeutic usklowever this i; not an | isomer of R688 iseplaced by the D isomer (A1(D-R18)).
uncommon problgm and methpds fqr targeting drugs ig,q activity of the peptides is directly correlated with the
Specific tissues exist and are being refined. strength of the helix and alignment of positiveharged

residues.

a

igure 8. Sructure of mtive and mutant peptides with
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Concluding comments

12.
Despite the huge advances in our understanding of

EC coupling since the 1960s, the molecular mechanisms of
the process are still lgely unknevn. We remain ignorant
about the atomic structures of the major players, the DHRR
and RyR. High resolution structural determinationaait
further refinements of particle analysis and/or
production of crystals and X-ray analysis of thesgdand
compl membrane spanning proteinsWe o not 14
understand the molecular nature of the interactions between
the proteins and indeed do not lsnavhich residues are
involved in most of the interactions. This information will
be provided by manof the current studies but will also 15
depend on the delopment of more sophisticated
techniqgues such as FRET and other fluorescent probe
techniqueg?® Such techniques may alsoeal the nature of

the interdomain interactions that we think are modified in g
the MH-like polymorphisms and in DM Finally, athough

all evidence strongly supports the mechanical coupling
mechanism for EC coupling, mechanical coupling remaings;
a hypothesis. Thalltimate experiment will be visualisation

of the conformational changes that in the DHPR and in the
RyR during EC coupling.

the
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