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Summary been cloned and sequenced: RyR1 in skeletal muscle; RyR2
_ ) ~in cardiac and smooth muscle; and RyR3 in ynaell
1. In muscle, intracellular calcium concentratlon,typesl The tw isoforms found in amphibian, fish andan
hence skletal muscle force and cardiac output, gutated 3 ,scle (RyRt and RyRB) are similar to RyR1 and RyR3
by uptale and release of calcium from the sarcoplasmig;espect-,dy_a Invertebrates carry a single RyR isoform
reticulum. The ryanodine receptor (RyR) forms the calciufgnich is similar to RyRZ.
release channel in the sarcoplasmic reticulum. During excitation contraction coupling (EC coupling)
2. Calcium release through RyRs is modulated by & myscle, depolarisation of the surface membrane and
wide variety of endogenous molecules including smal}snserse (O)-tubules causes release of2*Com the
: B ; + +
diffusible ligands such as &, Cef ?nd Md . The  sarcoplasmic reticulum (SR). This leads to an increase in
regulation of RyR channels byT& Ca* and M92 IS @ cytoplasmic [C&'], which in turn is the signal for
complex interplay of seeral regulatory mechanisms which -gntraction. Membrane depolarisation et s
are still being unnzlled. Consequ_entlyt i_s not clearly dihydropyridine  receptors (DHPR, L-type calcium
known hav RyRs are regulated in _restlng muscle andpannels) which trigger the opening of RyRs. The EC
during contraction. Reviewed here are: _ coupling mechanisms in skeletal and cardiac musderdif
3. Fectors controlling the aatity of RyRs in skletal | the heart, t-tuble depolarization triggers an influx of
and cardiac muscle with an emphasis on mechanisicp+ through the DHPR which awtites RyRs and calcium
insights desred from single_ chann_el_recording methods.  |gleasé® In skeletal muscle the influx of &ais not
4. The nature of didropyridine receptor (DHPR) (equired and the trigger for RyR awtition depends on a
control of RyRs in skeletal muscle ded from ,pncical link between the DHPR and the RiFDiscussed
experiments with peptide fragments of the DHPR ll-lllyajon are the vays in which cardiac and skeletal RyRs
loop. _ ~ (mammalian isoforms RyR1 and RyR2) arefatiéntly
5. Recent gperiments on coupled RyRs in lipid reqyjated by components of thgteplasm and lumen and

bilayers and their potential for resolving the elesi pqy this underlies the differences inestal and cardiac
mechanisms  controlling calcium release during cardigec coypling.

contraction.
Regulation of RyR1 in skeletal muscle

Introduction In the absence of Mg, the activity of RyR1s has a
_ ) ) bell-shaped dependence on cytoplasmic’ICd&ryR1s are

“Almost everything we do is controlled by calcium”. actvated by (1L uM cytoplasmic [C&*] and exposure of
The vast array of processesvgmed by intracellular ineir cytoplasmic face to >1 mM [€3 will inhibit them 1t
calcium signals relies on their precise spatial and tempojgl resting muscle, ytoplasmic [C&"] is 100-150 nM?213

2 H H i . . .
control= To echieve tis cells hae evolved intracellular \hereas during muscle contraction the cytoplasmi@*|Ca
stores that provide a stable, reliably controlled release Qfas torp0 M. 14

calcium into the cytopla_sm.v\?b types of calcium ion ATP is a R/R agonist which can auvtite RyR1s in
channels are kwn to provide the calcium release pagyw (e virtual absence ofytoplasmic C&', and in conjunction
from intracellular stores, namely ryanodine receptokgith C2* can cause almost full agtion. Activation of
(RyRs) and inositol 1,4,5-trisphosphate receptors. RyR1 by ATP and its non-hydrolysable analogue AMP-
In striated muscle (shetal and cardiac), the pcp has been reported toveaa K, in the range 0.2 to
sarcoplasmic reticulum (SR) is the calcium store from qz 15-18 |5 muscle [AP] (B mM,° facilitating near
which calcium release through RyRs is tley keterminate aximal ATP actiation of RyRs. Therefore, in the absence

of muscle force. The RyR hasvesl isoforms found in ¢ Mg?* (see below), ATP alone can trigger SR Qelease
different animal species. In mammals three isoforme ha
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in resting skletal muscle. The subsequent rise iRyR reyulation® Two peptides, A (*"*Thr-Letf®9) and G,
cytoplasmic C&" will reinforce RyR actiation, a process ("?4Glu-Prd®), were found to interact with isolated

called C&*induced C& release (CICR). RyRs36-42
In resting skeletal muscle the RyRs are inacti Of particular interest is the (peptide which is the
because of the inhibitory fetts of cytoplasmic M&g. The region of the II-lll loop which is thought to be a

total M@?* concentration in the cytoplasm [ mM,1°® determinant of siletal EC coupling. Application of this
much of which is bound to ™ so that the free Mgis (1l  peptide to isolated sketal RyRs resulted in a decrease in
mM.2921 Skinned fibre xperiments by Lamb and their Mg?*-inhibition which was mediated by a 2-fold
Stephensoft?3have hown that a reduction ofytoplasmic  increase in thek, of the I-sites?? This result shas the
free M@* from physiological leels to <0.2 mM causes striking parallel between the actions of the peptide and
Ca&* release from the SR. Muis beliesed to inhibit RyRs changes in RyR aefty during EC coupling. The 2-fold
by two mechanisms (the dual-inhibitionypothesi”?4. change in RyR affinity for Mg caused by Cis much
Mg?* can inhibit RyRs by competing with €afor the smaller than the 10-100 fold reduction that occurs during
activation sites A-sites) or M@* can close RyRs by binding EC coupling in skinned muscle fib?é4” and in triad
to low affinity, non-selectie dvalent cation inhibition sites preparationé® However, it would be surprising if the mere
that also mediate Cainhibition (I-sites). The dual presence of the Lpeptide mimickd EC coupling because
inhibition model predicts that competition between?'Ca the peptide fragment itself does not possess the DHPR
and Mg* at the A-sites will only produce significant sensor for membrane depolarisation and the bilayer
Mg?*-inhibition when cytoplasmic Cais less than UM  experiments are incapable of inducing conformational
(i.e. when the muscle is at rest). On the other h&sites changes in the peptides that mimic depolarisation. The
produce Mg*inhibition with K; (200 uM over the entire effect of G does indicate an interaction between e Iu-
physiological C&' range?*2® Pro’®° region of the DHPR and the part of the RyR which
The properties of RyR1s measured in isolation amfects thel-sites. DuringEC coupling this interaction
consistent with the calcium permeability of the SR imould indeed produce lg& changes in Mg-inhibition by
resting muscle. Heever, during EC coupling the gaulation  transmitting depolarisation induced conformational changes
of RyRs by cytoplasmic ligands is substantially altered. Atom the DHPR to the RyR.
rest, M@ is the primary inhibitor of C4 release from the The precise location of th&- and |- Mg?*/C&"* sites
SR. During t-tuble depolarization and aeétion of the in the RyR protein are not yet known but iasvclear at an
RyR by the DHPR, the sensitly of the RyRs to inhibition early stage that these sites are locateciy different parts
by Mg?* is reduced by more than 10-fd2%27 This is of the RyR proteif* Electron microscope image
thought to be due to a reduction in the ¥gffinity of the reconstruction shows RyRs toveaa hmge otoplasmic
I-sites and A-site¥*2728 This would relise te domain (the foot region) and a relaty small trans-
Mg?Z*inhibition of the RyR, permitting RyR agttion by membrane region that forms the?Cpore?® The RyR is a
ATP and its reinforcement by CICR (the NKfg de- homotetramer of(560 kDa subunits containing5035
repression ypothesid®). Uponrepolarisation of the siaée amino acids (aa). The trans-membrane pore is comprised of
membrane Mg-inhibition is reinstated. Since the Ffg the (11000 C-terminal amino acids (aa 4000-5000) and the
affinity of the I-sites is relatiely insensitve © Ca?*, thel- remaining amino acids form the foogien. Expressiomf
sites would agin be able to inastite the RyRs wen the RyR C-terminus produces Lahannels with similar
though the cytoplasmic [€4 is elevated during muscle conductance and &aactivation properties as full RyR%
excitation. TheMg?* de-repression hypothesis is furtherbut they lack regyulatory sites for Ca-inhibition. Thus it
supported by the observation that depolarization inducegpears that tha-sites are located in the C-terminagjicn
SR calcium release can be substantially inhibited hyhereas thd-sites are located in the foot region. RyR aa
reduced [AP] (0.5 mM) or by ATP antagonists such agl032 has been proposed to form part of Ahste because
adenosiné®2%30This indicates that the DHPR stimulationthe E4032A substitution decreases RyR1 sensitivity to
of RyRs is not sufficient on itsam for CZ* release and that Ca*-activation by four orders of magnitudé. However,
stimulation of RyRs by intracellular kands is necessary for this is not settled yet because othergehaoposed that aa

EC coupling'® 4032 is a crucial part of the signal transduction between the
Several regions of the DHPR arewviolved in its A-site and channel gatirf§.
physical interaction with the RyR1 in eletal musclé?! A likely candidate for thésite is the ery distinctive

Expression of cDNAs encoding chimeric constructs aequence of 30 conseagiregdive anino acids (with only
skeletal and cardiac DHPR, sulunits in myotubes h& one intervening posite residue) at positions 1873-1903 in
demonstrated that the cytoplasmic loop between repeatRFR1. Such a string of geive chamges could form a lo

and Il of the skeletal DHPR, sutunit (*¢Glu-Leu’®?),3? affinity, low Pecificity cation binding site. Significantithe

and more specifically residué&sPhe-Pré*233 are crucial to homologous sequence in the cardiac RyR2, where the
skeletal EC coupling. Application of peptide correspondingivalent cation affinity is 10-fold lower (see below), has a
to the II-1ll loop to isolated RyRs resulted in aetion of far lower net charge. Moreer, deletion of aa 1641-2437
skeletal lut not cardiac RyRs in some studies but not ifrom RyR1 appeared to reduce thsite affinity by 10-fold
others435 Shorter sequences e been synthesized to without effecting theA-site#® Another candidate for thie
determine the specific regions of the IlI-lll loopadlved in  site is in the amino acids near position 615. The R615C
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mutation in pig RyRs (leading to malignantperthermia) released from the SRCICR should provide anxplosive,
causes a 3-fold reduction in thesite affinity for C&* and positive feedback in calcium release that will completely
Mg?*.25 It is quite possible that both these regions couldmpty the SR by anstimulus from the surface membrane.
form thel-sitesvia inter-domain interactions between theseYet in spite of this, the quantity of calcium released from
widely separated sections of the amino acid sequence. the cardiac SR has a graded and stable dependence on the
The part of the RyRI-sites that encompass themagnitude of the calcium inflo through the sudce
Arg615 residue may also be important for EC couplingnembrané’ This is the “paradox of control” of cardiac EC
Several lines of evidence indicate that the DHPR II-Ill loopcoupling. © demonstrate a igetive feedback mechanism
interacts with RyRs som#ere between aa 450-1500. 1that breaks the CICRycle is the main challenge to
The peptide € has recently been shown to bind to theinderstanding control of calcium reled8e.
region between aa 450 and 1400 on RyRR) RyR Calcium sparks once provided a ray of hope for
peptides from within this ggon (922-1112 and 1303-1406) understanding cardiac EC coupling. It isnnanderstood
bind to both II-1Il and 1lI-1V loops of the DHPRL 523) Aa  that the graded response of?Ceelease in cells is due to
1303-1406°% and 1272-1455 of RyRihave keen identified recruitment of dilerent numbers of generatie C*
as critical for EC coupling. 4) The Arg615Cys mutation imelease eents that are localised at the triad junctions. These
pig skeletal RyRs not only reducésite affinity but also release eents are called sparks becauseyttappear as
reduces the aetiting effect of g.55 localised bursts of light '@ um diameter) in the presence of
Thus, an werall picture is emerging in which fluorescent C# indicators. Theifluorescence time-course
depolarization induced conformation changes in the DHPR&s an ®ponential rising phase lasting 10-20 ms which
are transmitted to the RyR1 region (aa 450-156Q)the corresponds to the time that the RyRs are open and
DHPR 1I-1Il loop. The 450-1500 region of the RyR alsareleasing C&. When the RyRs close and aelease is
contains thd-site for Mg#*-inhibition which undergoes a terminated, the fluorescence declines to baseline within
marked decrease in Mg affinity in response to DHPR [50-100 ms. &mination of C&4' release has been shown to
depolarisatiorf? In conjunction with this the DHPRs reducebe an inactiation mechanism with a refractory period of
the Mg+ affinity of the A-sites. Ithas been proposed thatB0 ms>® The spark intensities appear to be quantised,
DHPRs might do this by commandeering the mechanisimdicating that C& sparks imolve the coordinated
that decreases tha-site affinity in response to efged actvation of 2-10 RyR$° The disceoery of sparks
[C&* in the SR?® The subsequent allmtion of appeared to resavthe “paradox of control” at a cellular
Mg?*inhibition permits RyR actation by ATP and its level only to hare the same paradox reappear in our

reinforcement by CICR. understanding of spark terminati$h.Ca* release in a
) _ ) spark is self reinforcing, yet the mechanisms underlying the
Regulation of RyR2in cardiac muscle termination of C& release remains unkwa. Therefore

the “paradox of control” reduces to the question ofvho
RyRs can rapidly inactite after thg have been triggered
Ry C&* influx through the DHPRs.

One of the most peerful techniques used to
understand the basic mechanisms of*Gelease, has been
to extract the C4 release channels from muscle and study
them in isolation, in artificial bilayers, thus obviating the
compleities of cellular functiorf! The intransigence of the
cardiac EC coupling problem lies in ailéire of bilayer
measurements to vyield a plausible mechanism for
termination of C& releas€® This may be because €a
sparks result from coopenrai activation of RyRs in close
e pacled arrays while isolated RyRs in bilayersvddeen
thought to be too widely separated to mimic these
interactions.

An inroad into this problem has been uwwed in
recent years. A fe studies hae reported that when geral
RyRs are present, the opening of some RyRs depend on the
opening of others.g. the gating of these RyRs are coupled)
indicating that RyRs can form rebadly stable, closely

Regulation of cardiac RyRs by €aand Mg¢* and
ATP gperate by similar mechanisms asthi® in keletal
RyR1s ecept that the ligand sensitivities vary between th
two isoforms. Cardiac RyR2s are not appreciablyatetd
by ATP in the absence of &abut ATP augments their
activation by C&*.2%%6 In RyR2 thel- sites hae a D-fold
lower affinity for divalent ions than RyR%*#* The dual-
inhibition model predicts marked tifences in the ay
Mg?*-inhibition affects RyR1 and RyR2. At resting fCa
RyR1 and RyR2 are similarly inhibited by Rfghus it can
be rgaded as the brakon ardiac C&" release at rest.
However, a elevated cytoplasmic G4 (010 uM) which
occurs during muscle contraction, tHesites produc
relatively little inhibition of RyR2 compared to RyR1. Thus
in cardiac muscle raised cytoplasmic?*Ces sufficient to
alleviate the Mg*-inhibition of RyRs.

Our present understanding of the gukation
mechanisms in RyR2 fails toxgain the stability of
calcium release in cardiac musclBepolarisation of the

surface membrane initiates release byvplimg a small : . ;

increase in ytoplasmic calcium concentration WhiCh?_aCle.g ag?rgdat_as gthgsbllayin(jougllr&gi of (TVSSR\;:,?

relieves Mg?*-inhibition and ‘kick starts’ RyR opening. The Irst | ent|d|_e fm 4 th -burt .|ef yR1 and hyd - RVR

subsequent release of calcium from the SR further increag—&ose studies found that protein fractions enriched in Ry
ultimers could produce synchronously gated channels.

the cytoplasmic calcium concentration and strongly . . 2 .
reinforces RyR actition by CICR. The inherent his phenomenon required FK506 Binding Proteins

amplification of CICR underlies nearly all of the calciur‘r‘FKBPS? and was . independent of _Iumiljal ma
suggesting that coupling arose from a diregtsital link
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the SR lumen through the channel can activate neighbounizignelsvia their cytoplasmic C# activation sites A-sites-
labelledA on the left-most channel). The SR lumen is on the lower side of theaneribe shading on the higher side of
the membrane is a schematic of the free’fCarofile due to its dlux from the SR lumen. The aage dstance from the
pore that free C8* can diffuse depends on the rate at wh@a?* can bind to chelating gents in the bath(B) The pe-
dicted free [C&"] profiles near the cytoplasmic side of the goduring C&* efflux driven by 40 mV and 1 mM luminal
Ca?*.5” The arrows indicate the intgrore spamtions of RyRs (nearest and second nearest neighbours) in their triadic
arrays determined from electron mascopy?® (C) Recodings from an xperiment with 7 cardiac RyRs in the bilayer show-
ing coupled gating at 2V The dashed lines indicate the cent baselines (C) and openings of the first two channels (O1
and O2). The baths contained symmetric 250 mMsBkitions with 2 mM BB, cytoplasmic [Cé"]C =100 nM and lumi-

nal [Ca?*], =0.1 mM. The channel activity depended strongly on th& Bdfer. Free [Ca?*] was huffered to 100 nM by

5 mM BAPTA (top trace) and 2 mM EGY (bottom tace same bilayer). RyR activity was considerably greater in ties-pr
ence of EGTA.

between RyRs. Another distinct phenomenon was reportedd it was proposed that €dlow from one channel raised
where multiple RyR1 or RyR2 channels incorporated intthe local [C&"] sufficiently to actvate neighbouring RyRs
bilayers from SR vesicles were clearly coupled but did nat the bilayer (Figure 1A).

open in synchron?®6466These studies found that coupled The concentration profile of free €anear the

gding required the flo of Ca?* from lumen to gtoplasm cytoplasmic pore mouth depends on the*Glux through
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the pore and on the €abuffering in the cytoplasmic bdth that reduces theubst duration to < 10 ms (Figure 2B & C,
(Figure 1A&B). For example, the €abinding rate of arrons ‘c’ and ‘d’). The actiity of Mg?*-inhibited RyR
EGTA is [11000-fold slower than BPTA which means that clusters in the bilayer parallels the time course of*Ca
C&* emanating from the pore will diffuse a greater distanaelease during a calcium sparkowever, it is not yet clear
before it binds to EGA than to B\PTA. It can be seen in if intracellular Mg#* has ag role in terminating calcium
Figure 1B that in the presence oABTA the free [C4"] release in cardiac muscle.
falls to sub-actiating levels (<1 uM) within 35 nm of the
pore whereas in the presence of BGTee [C&] is still at
activating levels beyond 100 nm. B e
Figure 1C shass recordings of coupled cardiac RyRsA
in a lipid bilayer In the top trace, the free [€4is buffered o3
to 100 nM by 5 mM BPTA. The opening of a single RyR,
shavn by current transitions from the baseline (C) to the o "I [V W 4 (40 W [ LA N
first level (O1), occurs wery 200 ms on werage. Once a
single RyR has opened the other channels openveyati c il 11T T _____________________________________________
quickly (<20 ms) producing current transitions to high
levels (O2 and abeg). In this record the opening of a single
RyR increased the opening rate of its neighbail&fold. e T T S
The importance of the &a buffering is apparent by
comparing the top and bottom traces. In the bottom trace 2 |1t 111 1M .
BAPTA was replaced by 2 mM E@Twhich substantially I NI L 7 1
enlages the domain of aelated C&* near the pore mouth.  © ‘ ] ’
The opening rate of the first channel was not changed. ;
However, activity of other channels in response to the first
opening vas greatly increased. This is most likely because
in the presence of E@Ta sngle RyR can recruit more of
its neighbours (Figure 1A) and because the local freé"ICeC o3
is higher.
Interestingly coupling persisted vwen when the 02
BAPTA confined elgated cytoplasmic [CH] to within 35
nm of the poré®%® From these observations the separation
of RyRs in the bilayer was estimated to @0 nm. This GRS LW IR
separation (see ams in Figure 1B) is consistent with the T T
dimensions of RyR spacing in triad junctions, indicating 15pA Sl N
that during isolation and reconstitution, some of the RyR
arrays in muscle remain in tact and that rafts containin ) ) )
3-10 RyRs remain stable in lipid bilayers. The mechanisfi9ure 2. (A) Recodings from an eperiment with 3 sie-

linking the RyRs in these arrays is not wmobut this link @ RYRS in a bilayer showing coupled gatirige baths
is not in itself the mechanism for coupling. contained symmetric 250 mM TCsolutions with 2 mM

Experiments on coupled channels will alldetailed ATPé+ [(Ea2+]c =100 nM (with 5 mM BPTA) and
investigations of the mechanisms underlying thdCa 1} =1 mM. The channel activity wagcoded at -40

termination of C# release that would not be possible witHnVéSB & C) The samexperiment after addition of 0.5 mM
single channels. When the aetion of RyRs is Mg "o the cytoplasmic _bathCﬁ An expanded section of
synchronised then inagétion processes operating within (B) indicated by the_ horizontal hafhe features labelled
RyRs become apparento Tilustrate the way in which @-'d’ar e described in the text.

coupled RyRs could be used to resofitese mechanisms

we consider the effect of cyt.oplasmic ’R?I@n the coupled Concluding remarks

gaing of skeletal RyRs (Figure 2A). Lékthe coupled

gding seen in Figure 1, the first channel opening in the  Even though skeletal and cardiac RyReentie same
bilayer triggers the opening of other channels (seewarrasic regulation mechanisms, differences in thanll
marked ‘a’). Under the conditions in Figure 2A the channedensitvities of these mechanisms significantly alter tray w
openings are such that closure of all the channels in tifewhich the are controlled by the cell. In skeletal muscle,
membrane occurs owvaage once\ery 50-100 ms (arws  the RyR I-sites hae sifficiently high Mg* affinity to
‘@’ and ‘b’). The lursts of channel activity demarcated byinhibit C&* release. During EC coupling, €arelease is
these closures are too long to account for the duration t@iygeredvia a DHPR induced reduction in th andl-site
C&* release occurring during a Caspark. Hovever, affinity for Mg2*. Control of RyR1 by thel-site gies
Mg?*inhibition is knavn to decrease the mean open tim@HPRs the ability to terminate &a release upon
of RyRs in single channel recordings. When added tepolarisation, thus allowing tight control of Caelease by
coupled channels, Mgcauses a reduction in open durationhe surfice membrane. In cardiac muscle, ltsites hae a
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10-fold lower affinity for M@* and are not utilised by the
DHPR to regulate (4 release. Instead, €arelease is

triggered by the influx of CGa through the sudce 13.

membrane. He this release process is controlled by the
surface membrane is not yet understoodwHer, recent
developments in recording of RyR arrays should/epdhe
way for a much impreed understanding of cardiac EC

coupling. 14.
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