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Summary interaction sites. From a structural viewpoint, cryoelectron
o ) o microscopy has played an important role in visualising the
1. Excitation-contraction coupling in skeletal musclepypr and RyR assemblput because of its Vo atomic
is dependent on a psical interaction between the yesoution is not adequate to define structural detail at an
dihydropyridine receptor (DHPR) and the ryanodineyiomic lael.56 Our approach has been to systematically

receptor (RyR). . _ explore the structure of variousgseents of II-Ill loop by
2. Anumber of peptides deed from the II-lll loop  ging nuclear magnetic resonance (NMR) techniques
region of the DHPR hee keen shwn to be functionally |eading ultimately to the entire II-Ill loop. In this

actve in dimulating the release of calciunmia RyR  communication we examine the structure-function

channels. Their functior] has.beeln found to correlate WiFQIationship of seeral functionally actie peptide fragments
the presence of a basic helicabimn located at the N- ranging from the A & C peptides (as defined in 1995 by el

terminus of the II-Ill loop. Hayek et al”) through to the lI-lll loop. In doing so we
. 3. The entire recombinant skeletal DHPR II-1ll l00pgiscuss hw the structure of these peptides/proteins
is an efficient acwator of RyR1 and RyR2. . influence their interaction with specificgiens in the RyR.
4. The skeletal DHPR II-lll loop is comprised of a
series of a-helices It its tertiary structure has beenPeptide fragments of skeletal DHPR |1-111 loop
determined to be unstructured and flexible.
5. Fluorescence quenching experimentvehdeen ¢ 690 704 760 796

used to identify and measure the bindinfina§ of the II-
11l loop with fragments of the RyR.

Introduction ) )
Figure 1. The I1-111 loop region of the skeletal DHPR.

In skeletal muscle, the diiropyridine and ryanodine The 126 amino acid sequence has been dived int@xippr
receptor (DHPR & RyR) are tw membrane proteins mately 4 equal segments (A:OheA and C regions have
expressed in the -fubule and sarcoplasmic reticulumbeen shown to interact with the RyR uniteritro condi-
respectiely, that play a central role in xeitation- tions.
contraction coupling. EC coupling is the signal transduction In order to &plore the II-Il loop in closer detail it
process in muscle that allows a swd action potential t0 55 peen arbitrarily divided into four geents (A-D,

facilitate C&* release from intracellular stores. AFigure 1) and of these it is the A and C regions thae ha
comprehense description relating to the interactionspeen the subject of intense functional and structural
betvv.een.the DHPR gnd RyR in str_lated muscheeHaeen scrutin. The 20 amino-acid peptide (peptide A)
detailed in a recentvew." It is now widely accepted that & ¢qrresponding to the N-terminal part of the II-lil loop
physical coupling between theseaywoteins is inolved in - (Tr671-| eu690) is a high-affinity acsior of skeletal and
triggering the release of €avia the RyR into the ytosol.  cargiac RyR channels. Although in some studies the A
Recent attention has focused on tkaot site of interaction region of the 1I-11l loop is not required for EC couplifidit

and a prominent site olves the loop between the secongyas peen implicated in thevasall physical interaction

and third repeats of the skeletal DHRR subunit (II-lll yatween the DHPR and RYR.A stretch of positiely

2,3 . .
loop)== It has been shan that the II-ll loop forms a chaged residudsil'3that are aligned along the surface of
physical interaction with the footgéon of the RyR and 3n - o o helix structuré?* are deemed to be an essential

structural change in the loop is thought to be transmitted &%sign feature for the agdtion of RyR channels by peptide
the RyRuvia this interactiorf. It is therefore important to o | oss of either the posite chages or the helical

accurately determine the structural malp of the gyyciure resultsn a reduction in RyR asdtion by this

Proceedings of the Australian Physiological Society (26U6) ??? 39



Structue and function of DPHR II-1Il loop

peptide!® Curiously the scorpion toxins maurocalcine andHowever, our ion channel studies do indicate that at least
imperatoxin A can also awgtite the RyR, albeit with much one residue in this gion (A739) does alter the functional
greater potenc Competition studies va revealed that the profile that underpins RyR and DHPR interacti$h§hese

A segment of the IlI-lll loop and the scorpion toxins mayfindings in conjunction with theatt that the full 1l-1ll loop
interact with a common binding site on the RyRhis is and theC region peptides can alter RyR activity in an
indeed plausible since it has beenwshdhat both sets of isoform-independent manner suggests that vitro,

molecules are lined with a positly charged surfac& the cardiacDHPR and RyR ha the potential to interact.
The fact thain vivo they fail to do so may be more related
control to factors controlling protein expressionvéls and the
' “ l p localisation of RyR and DHPR than intrinsic differences in
sequence composition and structure.
10nM SDCL Preliminary structure of skeletal DHPR 11-111 loop

The full DHPR 1I-lll loop has been cloned and
expressed irEscheritiia coli and purified using a His-tag
based sequenéé. The activity of the purified protein ag
tested on gsietal RyR and single channel recordings
performed in our laboratory swaRyR actvation at protein
concentrations of 10 and 200 nM (as shown in Figure 2).

NMR Solution Structure of the Skeletal I1-111 Loop
Figure 2. Single channel recordings showing activation of NMR assignments were made with the aid of a
skeletal RyR by 10 and 200 nM recombinant skeletal 11-  15N/13C double label sample using standard multinuclear

11 DHPR loop (SDCL). Activity is lecoded at +40mV NMR technique$® Nuclear Overhauser effects (NOEs)
(mM, cis/trans)250/250 Cs230/230 CHO,S, 20/20 Cl,  and dipolar measurements are used routinely in solution
10 mM cis C&" and 1 mM trans C¥. Channel opening is state NMR to define the secondary and tertiary structures of
from the closed level C to the maximum conductance (O).molecules. On the basis of NOE afiti HNHA coupling
data, the II-lll loop secondary structureasvidentified as
Peptide C (residues GIu724-Pr0760) is a hlgiﬂll&f being a mixture of helical and random CF)”gi[B’lS.
activator of natve RyR channels at i@ concentration and HOwever, the absence of long range NOEs indicate that the
its role in skeletal EC coupling has been We“solu.tlo.n structure is hlghly .d|§ordered (Figure '3).
documented®17 It has been suggested that the C region &iréliminary dynamic studies indicate that the helical
the II-I1l loop is directly responsible for the interaction withf®Jions — shev restricted  mobility  (manuscript  in
the skeletal RyR218Since the mechanism of EC couplingPréParation). Confirmation of the lack of long range
differs between sMetal and cardiac muscle, great interedftramolecular interactions were observed by paramagnetic
surrounds whether specific modifications in the skeletal ¥in 1abelling and by residual dipolar coupling (RDC)
region sequence of DHPRawld lead to a loss of eletal Measurements. In  brief, paramagnetic spin labelling
EC coupling. The skeletal EC coupling domain has beégvolvgs the mtroduc'tlon of paramagnetically labelled (by
localized to residues 739-748 and substitution of three ndfi?€mical means) residues throughout the molecule enabling
consered residues (A739, F741 and P742) by thEhe magnetic properties of atoms Within.25A of the Iqbel to
equialent cardiac residues has been found to altelesd P& probed? RDCs on the other handvolve the partial
EC coupling!® Using Chou-Fasman secondary structur@“gnm_em of mo!ecules with the a!d selected .medla (i.e.
prediction software it was predicted that one of the Pacteriophage, bicelles). The magnitude of the internuclear

consequences of these amino acid substitutions would bedipPlar intéractions  prodes long-range orientational

increase in thei-helical structure of the getively chaged information?®> The results obtained from both of these
residues further downstream of the mutated site§Periments suggest the presence of a highly extended and

Furthermore, it has been suggested that these structdigfiPle structure.

differences could account for the non-interaction betwe ; PIT

the cardiac DHPR and RyR Our recent NMR-basedark Ptential RyR binding sites of the 1111 L.oop
provides no eidence for an increase in helical content as a  In an attempt to identify the RyR 1I-lll loop binding
result of either the proposed single or triple mutatfSris. region, the RyR has been systematicallyidid into nine
general we find that there is some helical content betwefagments (F1-F9); each of which has been transcribed and
residues 740 - 749 in both the cardiac aneletkl translated as separate protein prodeft8y performing
sequences and both isoformsvéaasommon elements of pull-dovn experiments with F1-F9, the location of the

secondary structuré. The introduction of cardiac residuesskeletal DHPR II-11l loop binding site has been identified to
into the three positions 739, 741 and 742 of thelesdl lie within the F3 region (between residues 922 and 1%12).
DHPR 1I-11l loop did not preent its interaction with RyR. Upon further inspection, Leong and MacLemfgroposed
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a-helices, and perhaps central parts of the II-lll loop are
_» involved with a weak binding interaction with thgta@solic
A region SPRY2 fragment of the RyR.
o7 L~ Future Work
=Ny :
890 e, C region Our Future work will be to further explore the

723 MQ"LJ&, ‘,@7 DHPR-RyR interaction domain by expressingfisight
734 v ”'7}4 « quantities of stable RyR fragments capable of binding the
748 B
Vo™
760 comple will then be fully characterised using NMR
{ techniques. This information will be important in the

. understanding of the physical interaction between the

N~y

- skeletal DHPR and RyR membrane proteins.

‘g DHPR I-lll loop. The structure of the II-lll loop/RyR
r)

\’\
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