Elevated O₂[•] – **production at 37**°**C reduces membrane excitability in isolated rat skeletal muscle** J.N. Edwards,¹ W.A. Macdonald,² C. Van Der Poel¹ and D.G. Stephenson,¹ ¹Department of Zoology, La Trobe University, Melbourne 3086, Australia and ²Institute of Physiology and Biophysics, University of Aarhus, Denmark.

When isolated mammalian skeletal muscle is exposed to 37°C, performance rapidly and irreversibly declines. Also, extracellularly measured superoxide ($O_2^{\bullet-}$) is markedly greater at 37°C than at 23°C. This can reduce muscle performance at temperatures above 40°C, by reducing contractile apparatus function. We investigate which excitation-contraction coupling steps contribute to the decline in performance at 37°C. Rats were killed by cervical dislocation or by halothane overdose. Single mechanically-skinned fibres were prepared from EDL muscles kept in Krebs-Ringer Solution (KRS) at 22°C or 37°C (30min). Skinned fibres were then activated at 22°C in solutions of different pCa. The resting membrane potential (RMP) and intracellular action potential (AP) were measured at 22°C in single fibres before and after 40min incubation in KRS at 22°C or 37°C. Results show that exposure to 37°C (30min) caused no significant effect on either the maximum Ca²⁺-activated specific force or on the Ca²⁺-sensitivity of the contractile apparatus. However, the RMP became depolarized (~10mV) and the AP amplitude was reduced by ~35mV following 37°C treatment (40min). Additionally, the depolarisation and repolarisation rate was significantly slower compared to control fibres (22°C). Tempol (1mM) largely ameliorated the effects of 37°C on the RMP, AP amplitude and maximum rate of repolarisation. In summary, the increased rate of O_2^{\bullet} - production at 37°C significantly reduces membrane excitability, explaining to a large extent the concomitant reduction in tetanic force observed in the isolated rat EDL muscle under the same conditions.