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Summary

1. Synapse plasticity, defined as an activity-
dependent change in the strength of synapses, was first
described in 1973 by Tim Bliss and Terje Lømo.1 Since
these seminal experiments were reported, the field of
synapse plasticity has expanded into one of the most widely
studied areas in neuroscience.

2. Significant effort has been focussed on
determining the expression mechanisms of the changes in
synapse strength. This review will focus on the changes in
the postsynaptic expression of glutamate receptors that have
been shown to occur during the expression of synapse
plasticity.

3. Biochemical studies of excitatory synapses in the
central nervous system have rev ealed a high density of
proteins concentrated at dendritic spines. These proteins
appear to play critical roles in synaptic structure, plasticity
and in trafficking receptors to synapses.

4. There is growing evidence that synapse plasticity
could be the cellular basis of certain forms of learning and
memory. Determining the behavioural correlates of this
fundamental synaptic process will continue to be addressed
in current and future research.

Introduction

Excitatory synapses of the mammalian central
nervous system are asymmetric sites of neuron-neuron
contact that enable the formation of neuronal networks
within the brain. In response to depolarization of the
presynaptic terminal, neurotransmitter is released into
synaptic cleft where it binds specifically to postsynaptic
receptors clustered on the postsynaptic dendritic spine
(Figure 1). Neurotransmitter binding then triggers ion flow
into the postsynaptic neuron. The majority of excitatory
synapses are glutamatergic, meaning that they utilise the
amino acid glutamate as the neurotransmitter. The primary
subtypes of glutamate receptors expressed at glutamatergic
synapses are theα-amino-3-hydroxy-5-methylisoxa-
zole-4-propionic acid receptor (AMPA receptor) and N-
methyl-D-aspartate receptor (NMDA receptor) subtypes.
AMPA-type glutamate receptors are important in
determining postsynaptic cell excitability, since they
conduct the majority of the current flow at resting
membrane potentials.2 The NMDA-type glutamate receptor
exhibits a distinct property of voltage-dependent
magnesium blockade, enabling it to conduct current only at
depolarised membrane potentials.3,4 This receptor is also
unique in its high calcium permeability, and slow activation

and deactivation kinetics.5,6 As discussed below, these
properties allow highly regulated current flow in response
to specific incoming synapse activity.

Glutamate receptors are targeted and anchored at
excitatory synapses through a network of scaffolding
proteins. These proteins are concentrated at the tip of the
postsynaptic dendritic spine at a region termed the
postsynaptic density (PSD; Figure 1). The PSD is estimated
to contain more than 200 synaptic proteins which have a
myriad of functions. Included in this group are the
glutamate receptor binding Synapse Associated Proteins
(SAPs) SAP97, SAP102 and SAP90 (also known as
PSD95). These proteins are emerging as the central
organisers of synapses: they are critical for synaptic
structural integrity and for the trafficking of multi-
component receptor complexes to synapses.7,8

Plasticity at excitatory synapses

Plasticity of the circuitry that wires the brain is a
fundamental property of neurons that is thought to underlie
behaviour, cognition, learning and memory.9,10 The
development of new synapses, the activity-dependent
changes in the strength of existing synapses and the
elimination of synapses have been proposed to form the
basis of this plasticity. The NMDA-type glutamate receptor
subtype is crucial for synapse plasticity11 and for learning
and memory.12 The unique properties of the NMDA
receptor play a key role in the cellular mechanisms thought
to underlie learning and memory by defining the receptor as
a ‘coincidence detector’ to initiate synapse plasticity and
leading to the formation of new neural networks.13 In
response to afferent activity-induced depolarization of the
postsynapse coincident with presynaptic transmitter release,
calcium influx through the NMDA receptor triggers the
active insertion or removal of AMPA-type glutamate
receptors (Figure 1). Plasticity models that increase
synaptic strength are termed long-term potentiation (LTP)
while those that decrease synaptic strength are termed long-
term depression (LTD). ThusAMPA receptors are thought
responsible for the expression of synaptic plasticity, while
NMDA receptors for its control.

Tr afficking and plasticity of AMPA r eceptors

Most AMPA receptors are tetramers composed of a
combination of GluR1, 2, 3 and 4 subunits13 (for example,
GluR1/GluR2 or GluR2/GluR3 heteromers). The subunit
composition varies in a brain region-dependent manner. At
hippocampal CA3-CA1 synapses, the synapse population
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Figure 1. Plasticity at excitatory synapses in the central nervous system. The two major subtypes of glutamate receptors,
AMPA and NMDA, are localized in the electron-dense postsynaptic density where they bind glutamate released from the
presynaptic terminal. In response to LTP-inducing stimuli, AMPA receptors are rapidly inserted into the synaptic mem-
brane followed by lateral diffusion into the PSD. As a result, synapse strength is increased, as measured by an increase in
the amplitude of synaptic currents. In response to LTD-inducing stimuli, both AMPA and NMDA receptors are thought to be
removed from the synaptic membrane, potentially at designated endocytic zones. As a result, synapse strength is decreased,
as measured by a decrease in the amplitude of synaptic currents. After removal from the synapse, receptors can be recycled
back to the membrane or targeted for degradation.

most widely studied with respect to synapse plasticity, most
AMPA receptors are GluR1/GluR2 or GluR2/GluR3
heteromers. The trafficking of AMPA receptors to the
postsynaptic spine and subsequently to the postsynaptic
membrane requires interactions between the AMPA
receptor subunits and PSD proteins through their PDZ-
domains7,14 (postsynaptic density, discs large, zona
occludens). These domains interact with the extreme C-
termini of their binding partners, and with specific regards
to AMPA receptor trafficking and synaptic localization
include SAP97,15 protein that interacts with C-kinase
(PICK1),16 and glutamate receptor interacting protein

(GRIP).17 SAP97 has been proposed to have a key role in
directing AMPA receptors to synapses with myosin VI, a
minus end, actin-dependent motor.18 SAP97, myosin VI and
GluR1 are thought to form a trimeric complex, such that
SAP97 serves as an adaptor protein linking myosin VI to
vesicular cargos carrying glutamate receptors from the
soma to the synapse.

AMPA receptors can also be synthesized in the
dendrites, independent of receptor trafficking from the
soma. Live imaging of tetracysteine-tagged GluR1 and
GluR2 subunits showed that both subunits are locally
synthesized in the dendrites.19 What the relative
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contributions of local versus soma synthesized AMPA
receptor subunits is not known, but dendritic synthesis may
provide a synapse specific mechanism for more rapid
changes in synapse strength that do not require long-term
trafficking of AMPA receptors from the soma.19

Insertion of AMPA receptors into synapses

There is considerable evidence from many
laboratories that AMPA receptors are inserted into the
synaptic membrane in response to LTP induction.The
process of synaptic insertion of AMPA receptors is a two
step process, mediated by the 4-pass transmembrane protein
Stargazin.20 First, Stargazin recruits AMPA receptors to the
surface membrane from a presumed intracellular pool.
Then,via a protein kinase A-dependent interaction between
the C-terminal tail of Stargazin and the first two PDZ
domains of PSD95, AMPA receptors are recruited to the
synaptic site.21,22 Stargazin and the family of stargazin-
related proteins TARPs (transmembrane AMPA receptor
regulatory proteins) are also critical for maintaining the
surface expression of AMPA receptors at synapses. TARPs
are membrane stable proteins that turn over very slowly.
The dependence of surface AMPA receptor expression on
TARP proteins was first shown in stargazer knockout mice
which exhibit a complete loss of surface AMPA receptors in
cerebellar granule cells. Other members of this family (γ3,
γ4 and γ8) are proposed to mediate surface AMPA receptor
expression in the forebrain.23

Removal of AMPA receptors from the synapse

How glutamate receptors are removed from the
synapse has been an area of intensive study and progress
over the past 5 years, with multiple labs showing that
AMPA receptors are rapidly recycled out of the synapse in
the time course of minutes.24-26 As a result, synapse
strength is decreased and this weakening of synapses is
proposed to initiate synapse elimination, although this has
not been directly shown.

The process of AMPA receptor removal f rom CNS
synapses is known to be intricately linked to the endocytic
proteins clathrin and dynamin, and the PSD proteins GRIP
and PICK.25-27 The clathrin adaptor protein AP-2 binds the
GluR2 subunit of the AMPA receptor and binding of AP-2
to AMPA receptors is required for NMDA-stimulated
AMPA receptor endocytosis and LTD.26

Inhibition of GluR2/3 C-terminal tail interactions
with the PSD proteins PICK and GRIP disrupts basal
transmission and synaptic plasticity.24,25 Specifically, the
disruption of GluR2/3 binding interactions results in an
increase in receptor expression at the synapse, and the
inability to undergo LTD, suggestive of a role of PICK and
GRIP in stabilizing an intracellular pool of AMPA receptors
and regulating their reinsertion.24 Interestingly, AMPA
receptors can regulate whether GRIP or PICK binds to their
C terminus through GluR2 phosphorylation, providing a
mechanism to differentiate interactions of PICK1 or GRIP
with GluR2 to regulate AMPA receptor surface
expression.27 Live imaging of neurons transfected with

GFP-clathrin shows the existence of a specialized endocytic
zone lateral to the PSD.28 Membrane proteins such as
AMPA receptors must therefore dissociate from TARPs and
other PSD proteins and translocate to this extrasynaptic
region to undergo internalization. After their removal f rom
the postsynaptic membrane, AMPA receptors are thought to
differentially sort between recycling pools and degradative
pathways. Biochemicalanalysis has identified a light
membrane fraction rich in AMPA receptors that
corresponds to a population of tubular vesicles ranging in
size from 50 to 300 nm.29 This pool could serve as a
dendritic recycling pool of AMPA receptors. AMPA
receptors that have been endocytosed in an NMDA
receptor-, calcium- and phosphatase-dependent manner
have been shown to rapidly recycle back into the synaptic
membrane; in contrast, those endocytosed independent of
NMDA receptor activation are targeted to late endosomes
and lysosomes.30

Tr afficking and plasticity of the NMDA r eceptor

Five NMDA receptor subunits are expressed in the
brain.31,32 The NR1 subunit is ubiquitously expressed and
has 8 distinct splice isoforms. The four subtypes of the NR2
subunit are termed NR2A-NR2D (with each except for
NR2A having several splice variants). NMDA receptors are
tetramers composed of multiple NR1 subunits together with
at least one NR2 type,31,32 with the different combinations
bestowing distinct functional properties onto the receptor.31

The NR1 subunit is necessary for channel function and
displays similar structure and sequence homology to
subunits of other ion channels.31 The NR2 subunits however
are unique as they hav e long C-terminal tails serving as
anchoring points for signal transduction enzymes.33 Within
the hippocampus, NR2A and NR2B subunits are most
prominent. Duringsynapse development and maturation,
the subunit composition of the NMDA receptor switches
from a heteromeric receptor composed of NR1 subunits
together with NR2B subunits to one composed of NR1 with
NR2A subunits.6 This subunit replacement confers distinct
kinetic properties on the receptor: replacement by 2A
speeds the decay of the NMDA receptor-mediated EPSC,
resulting in NMDA receptor-mediated synaptic currents of
shorter duration. This change in channel properties may
underlie experience-dependent plasticity.34

Tr afficking and insertion of NMDA receptors

Live imaging of GFP-tagged NR1 has suggested that
NMDA receptors traffic in mobile transport packets to
developing synaptic sites.35 However, timelapse imaging
and FRAP (fluorescence recovery after photobleaching, a
visual measure of protein turnover) of PSD proteins
including NR1, showed gradual appearance of clusters,
indicating that these proteins are recruited to new synapses
in a gradual manner.36 No postsynaptic vesicular transport
packets of NR1 were evident. NMDA receptors are integral
membrane proteins and therefore must be transported to the
synaptic membranevia a vesicular intermediate.The above
evidence suggests that this could bevia packets35 or by
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vesicles too small to be detected at the light microscope
level.36

Rapid delivery of NMDA receptors into the
postsynaptic membrane has been shown to occurvia PKC
activated, SNARE-dependent exocytosis.37 Live imaging of
GFP-NMDA receptor subunit recombinant proteins have
shown NMDA receptor insertion may be as complex as
AMPA receptors. At the early postsynapse when NR2B-
containing NMDA receptors are prevalent, GFP-tagged
NR2B subunits were shown to be recruited in an activity-
independent manner.38 As development progresses, and
synaptic activity begins to increase, NR2B-containing
receptors are internalized and replaced by NR2A-
containing receptors, with this switch requiring synaptic
activity to occur.

The synaptic trafficking and the subsequent insertion
of NMDA receptors into the synapse is tightly regulated. In
the gene encoding NR1, exons 21 and 22a encode C1 and
C2 cassettes in the intracellular domain of NR1 subunit.
NR1 splice variants containing the C1 cassette have
endoplasmic reticulum (ER) retention motifs that
subsequently prevent surface expression of this splice
variant.39 Shielding of C1 cassette promotes forward
trafficking to the synapse,39 whereas the C2 cassette slows
export from the ER.40 In response to different levels of
activity, neurons can control the level of NMDA receptor
expression at the synapse through rapid translation of
specific NR1A splice variants: chronic changes in synaptic
activity control splicing at the C2/C2′ site to accelerate the
trafficking of C2′ receptors to the synapse,40 showing
mRNA splicing as a novel mechanism to control NMDA
receptor surface expression during activity-dependent
changes in synaptic strength.

Activity-dependent regulation of NMDA receptor expression

For many years it was widely believed that NMDA
receptors were not subject to activity-dependent regulation
that has been reported for the AMPA receptor. For example,
in contrast to AMPA receptors, NMDA receptors exhibit
high resistance to detergent extraction from PSDs,41

indicating that they are tightly anchored to the cytoskeleton
at the synaptic site. In studies in dissociated neuronal
cultures, field or pharmacological stimulation to induce
AMPA receptor internalization resulted in no NR1
internalization.42 In addition, there have been reports of a
lack of activity-dependent up-regulation of NMDA
receptors accompanying the up-regulation of AMPA
receptors associated with the expression of LTP.43-46

Using the irreversible use-dependent NMDA receptor
antagonist MK801, the movement of NMDA receptors into
and out of the synaptic membrane was shown for the first
time to occur through lateral diffusion between synaptic and
extrasynaptic pools.47 NMDA receptor movements occurred
on the time scale of minutes. As many as 65% of synaptic
NMDA receptors were calculated to be mobile.This study
challenged the view that NMDA receptors are stable
components, anchored to the PSD by PSD-associated
proteins.

Recently it has been demonstrated that synaptic
currents mediated by NMDA receptors can be regulated by
synaptic activity, particularly in the negative direction. This
evidence of activity-induced NMDA receptor
downregulation has suggested that NMDA receptors are not
static in the postsynaptic membrane, but may in fact be as
dynamic as AMPA receptors following the induction of
LTD. During synaptic depression, the amplitude of NMDA
receptor-mediated currents is suppressed in an NMDA
receptor-dependent manner.48-50 This depression of the
NMDA receptor component of the postsynaptic current has
subsequently been linked to endocytic processes: evidence
of NMDA receptor endocytosis following application of
exogenous agonists has been shown in both heterologous
and neuronal systems.51-53 NMDA receptors undergo rapid
dynamin-dependent endocytosis in response to the
induction of LTD,50 upon glycine priming,53 and after
repeated long-term agonist application.52 In addition,
NMDA receptors co-immunoprecipitate with the endocytic
protein AP-2 that links internalized proteins to clathrin.53

The NR2B subunit of the NMDA receptor contains an
endocytic motif (YEKL) in its C-terminus that directly
interacts with the endocytic AP-2 adaptor proteinµ2.54 The
AP-2 binding site on NR2B is adjacent to but distinct from
the PSD95 binding site of NR2B, with each site having
opposing effects on surface NMDA receptor expression.
The PSD proteins PSD95, SAP97 and PSD93 may control
the availability of this endocytic motif for AP-2 binding and
subsequent endocytosis of the NMDA receptor.51 These
recent studies can be consistent with earlier data suggesting
NMDA receptors are fixed in the postsynaptic density by
PSD proteins, by showing that NMDA receptors can be
dynamic, but only following unbinding from PSD proteins
and the subsequent binding of endocytic proteins.

Consequences of NMDA receptor plasticity: metaplasticity.

Activity-dependent regulation of the NMDA receptor
influences the ability of the synapse to undergo further
NMDA receptor-dependent plasticity, serving as a basis for
some forms of metaplasticity. Activity-dependent regulation
of NMDA receptor function and synaptic expression could
be controlled by the PSD proteins it is bound to,51 its
location in the synaptic or extrasynaptic membrane,47 and
the activity state of the synapse.49,50 Anchored NMDA
receptors at the PSD that are only subject to downregulation
under certain conditions would ensure that synapses in the
brain protect their ability to undergo future NMDA
receptor-dependent plasticity and subsequent NMDA-
receptor dependent processes such as some forms of
learning and memory.

Concluding remarks

Over the past 10 years, incredible progress has been
made in our understanding of the molecular mechanisms of
synapse function and plasticity in the central nervous
system. The detailed analysis of the families of synaptic
proteins localized to the PSD have provided fundamental
information into how synapses are formed, how synaptic
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proteins are targeted to synapses, and how synapses can
change their strength. These processes are essential to our
understanding of brain function at a behavioural level.
Indeed, correlative studies of animal behaviour and synapse
strength are revealing changes in glutamate receptor
expression at synapses in response to visual changes,
learning and drug addiction.48,55,56 Moreover, recent
advances are now enabling the measurement of synapse
function in awake, behaving animals.57 Such advances are
critical to enable us to bridge the gap in our understanding
of how cellular mechanisms translate to cognitive functions
by providing powerful information on synapse physiology
during natural behaviours.
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