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Summary

1. Mammalian eggs are arrested at metaphase of
their second meiotic division when ovulated and remain
arrested until fertilized. The sperm delivers into the egg
phospholipase Cζ, which triggers a series of Ca2+ spikes
lasting several hours. The Ca2+ spikes provide the necessary
and sufficient trigger for all the events of fertilization,
including exit from metaphase II arrest and extrusion of
cortical granules that block the entry of other sperm.

2. The oscillatory Ca2+ signal switches on
calmodulin-dependent protein kinase II (CamKII), which
phosphorylates the egg-specific protein Emi2, earmarking it
for degradation. To remain metaphase II arrested eggs must
maintain high levels of Maturation-Promoting Factor
(MPF) activity, a heterodimer of CDK1 and cyclin B1.
Emi2 prevents loss of MPF by blocking cyclin B1
degradation, a process which is achieved by inhibiting the
activity of the Anaphase-Promoting Complex/Cyclosome.
CamKII is not however the primary initiator in the
extrusion of cortical granules.

3. Ca2+ spiking is also observed in mitosis of one-
cell embryos, probably because phospholipase Cζ contains
a nuclear localisation signal and so is released into the
cytoplasm following nuclear envelope breakdown. The
function of these mitotic Ca2+ spikes remains obscure,
although they are not absolutely required for passage
through mitosis.

4. Intriguingly the pattern of Ca2+ spikes observed at
fertilization have an effect on both pre- and post-
implantation development in a manner that is independent
of their ability to activate eggs. This suggests that the Ca2+

spikes which are set in train at fertilization are having
effects on processes initiated in the newly fertilized egg but
whose influences are only observed several cell divisions
later. The nature of the signals remain little explored but
their importance is clear and so warrant further
investigation.

Introduction

Ca2+ is a ubiquitous intracellular signalling
molecule,1 and intracellular Ca2+ (Ca2+

i) changes during
signal transduction processes have been widely examined
over sev eral decades. Fertilization is one such event where
Ca2+

i plays a pivotal role.2-5 In most species a rise in Ca2+
i

is induced by the fertilizing sperm and forms the essential
trigger for the egg-embryo transition. This is a remarkable
feat of conservation considering that eggs of different
species arrest at different points in meiosis, or in some

species have completed meiosis.4 Therefore Ca2+
i is likely

having effects on diverse signalling pathways at fertilization
in eggs of different species.

Mammalian eggs are ovulated while arrested at
metaphase of the second meiotic division (MetII). They
remain arrested at this stage until fertilized, and if not
degenerate. It makes physiological sense to prevent entry
into the embryonic cell cycles without sperm, firstly
because development to term of such parthenotes is not
possible due to the need to have genes of paternal origin in
mammals, and secondly to prevent growth of potentially
cancerous cells in the female genital tract.

It has long been known that Ca2+
i is both necessary

and sufficient for mammalian fertilization to occur.6 Thus if
Ca2+

i rises are blocked all the events of fertilization are
inhibited. Theterm ‘egg activation’ is used to describe
these events and encompass not only cell cycle resumption
out of MetII arrest but also the release of cortical granules
(CG), which block the entry of other sperm, and any other
ev ents associated with the egg-embryo transition.

This review concentrates on recent developments in
our understanding of the signalling pathway used by the
Ca2+

i signal from the sperm at fertilization to induce release
from egg arrest. It then goes on to examine data supporting
the hypothesis that Ca2+

i changes are also important for
longer term embryo development, several divisions after its
well-established meiotic role. The review hints at some
ideas as to how these two temporally separate processes
may be connected.

What does calcium do at fertilization?

There are two main events which are triggered
directly by the Ca2+

i rise at fertilization: CG release, which
is responsible for the block to polyspermy; and initiation of
cell cycle resumption out of meiosis from MetII arrest.
Before examining these processes in any detail it is first
worth commenting on the spatiotemporal aspects of the
Ca2+

i signal in mammalian eggs. Some of the first Ca2+
i

recordings of eggs were performed on species in which a
single Ca2+

i rise was observed to pass across the egg from
the site of sperm fusion. Embryonic development quickly
ensued. In striking contrast when similar studies were
performed on mammalian eggs it was clear that sperm
induced a series of Ca2+

i rises (hereafter ‘spikes’) that lasted
several hours.7-9 Figure 1 illustrates the sperm-induced Ca2+

signal in mammalian eggs.
The ability of mammalian eggs to respond to sperm

with a long lasting Ca2+
i signal suggested that the long

stimulus was required to induce the egg to activate properly.
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Figure 1. Schematic of Ca2+
i spiking in mammalian eggs.Met II arrested mammalian eggs show a series of Ca2+

i spikes
lasting several hours, until pronuclei form in the 1-cell embryo. Nuclear envelope breakdown at the start of mitosis in the
1-cell embryo is the time at which Ca2+

i spiking is re-initiated. Cessation of spiking is most likely due to nuclear
sequestration of PLCζ, which is then released into the cytoplasm during first mitosis.

This has been borne out by elegant work which has
demonstrated that in order to get complete CG release and
to induce exit from MetII arrest the egg needs to have
experienced multiple Ca2+

i spikes.10,11 Interestingly fewer
spikes are needed to promote CG release than cell cycle
resumption10 but this may make physiological sense if the
fertilizing sperm has a more immediate need to block the
entry of other sperm than it does to trigger the egg to
complete its meiotic division.

The initiator of Ca2+
i release in mammalian eggs is

not fully resolved but is a protein delivered into the egg by
the sperm. The most likely candidate is a sperm-specific
member of the phospholipase C (PLC) family, PLCζ.12-14

Although other sperm initiating factors have been
reported15-17 they remain to be substantiated and there now
appears some consensus that the sperm protein is probably
PLCζ acting alone. The generation of a PLCζ knockout
mouse would help finally to resolve this issue and is
expected within the next few years. InterestinglyPLCζ
appears to be the initiating factor in mammals and birds,18

but not in some fish and primitive chordates, suggesting it is
a recently evolved PLC member. Reg ardless of the actual
nature of the initiating factor it is clear that the Ca2+ spikes
at fertilization are driven by inositol trisphosphate
production acting on its endoplasmic reticulum receptor
(InsP3R).19-22 PLCζ contains within it a nuclear localisation
signal,14,23,24 which promotes its accumulation in the
pronuclei that form at the completion of meiosis II. The
nuclear accumulation of PLCζ appears to be the mechanism
by which Ca2+

i spikes are terminated23,25 and accounts for
the fact that when pronuclei formation is blocked Ca2+

i
spiking continues indefinitely.26

Although it has been established for some time that
Ca2+

i is required to induce cell cycle resumption, the
mechanism by which this is achieved has only recently
been described. The most downstream target of Ca2+

i is the
kinase MPF (Maturation-Promoting Factor or M-Phase
Promoting Factor). MPF activity is high in unfertilized eggs
and rapidly falls at fertilization.27,28 MPF is a dimer but its
catalytic subunit CDK1 is without activity unless bound to

its regulatory partner, which in mammals is cyclin B1. If
degradation of cyclin B1 is prevented then eggs remain
MetII arrested,29 ev en though sperm have fused and Ca2+

i
spiking has been initiated. High MPF activity is not just
observed during MetII arrest, but is seen in all eukaryotic
cells as they pass through mitosis.In mitosis, the decrease
in MPF activity at the metaphase-anaphase transition is
mediated by the Anaphase-Promoting Complex/Cyclosome
(APC/C), a large multimeric protein complex whose
activity is essential for exit from mitosis.30 By the nature of
its large multisubunit size APC/C is likely subject to a
number of control points in its activity; the most described
being the spindle assembly checkpoint (SAC). SAC
components are members of the Mad and Bub family as
well as MpsI kinase.31 These act to inhibit APC/C activity
before full congression and microtubule attachment of
chromosomes on a metaphase spindle. In this way mis-
segregation of chromosomes is avoided at anaphase.
Although there is evidence that in frog MetII arrest may be
achieved by components of the SAC family inhibiting
APC/C, in mammals this mechanism appears less
important.32 Recently a novel APC/C inhibitor Early
Mitotic Inhibitor I (Emi1) was established as being required
to prevent premature APC/C activity as cells enter
mitosis.33,34 A related protein Emi2/Erp1 (Emi1-related
protein 1), was then later identified, found to be egg
specific, and now seems to be the likely target of Ca2+

i
action.35-38

Loss of Emi2 at fertilization is achieved through
phosphorylation by calmodulin-dependent protein kinase II
(CamKII). This fits with the observation that CamKII
activity increases at fertilization on a Ca2+

i signal,39,40 and
also constitutively-active CamKII induces cyclin B1
degradation and so cell cycle resumption from MetII
arrest.41 This phosphorylation of Emi2 by CamKII creates a
docking site for polo kinase which further phosphorylates
Emi2 and this second phosphorylation acts as a trigger for
Emi2 loss, through its polyubiquitination by the E3 ligase
Skpl-Cullin/F-box protein. This mechanism of degradation
thus far has been demonstrated only in frog eggs.35-38
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However Emi2 appears to be physiologically relevant in
mammals for MetII arrest, since when this protein is
knocked down in MetII arrested eggs, it induces them to
parthenogenetically activate.42 Furthermore when its
synthesis is prevented during oocyte maturation, the oocytes
fail to arrest at MetII.43 Tagging both cyclin B1 and Emi2
with different fluorescent proteins and imaging their
degradation simultaneously in the same egg, reveals that
Emi2 loss occurs ahead of cyclin B1.43 Therefore the basic
signal transduction pathway which operates at fertilization
is likely to be activation of the APC/C through loss in
Emi2, stimulated by CamKII phosphorylation. Activation
of the APC/C induces degradation of cyclin B1, so MPF
falls and oocytes can then resume their second meiotic
division.

Interestingly CG release, which occurs ahead of cell
cycle resumption, although Ca2+ dependent appears not to
involve CamKII.44 Thus a constitutively active mutant of
CamKII, although able to induce cell cycle resumption,
does not produce the extent of CG release observed with
sperm. This suggests that a second, independent signalling
pathway is used which is most likely to involve myosin
light chain kinase (MLCK), since inhibition of MLCK,
blocks CG release.45

What does calcium do at first mitosis?

By the time pronuclei form in the 1-cell embryo it is
committed to passage through the first cell cycle with S-
phase starting shortly after pronuclei are observed. Due to
sequestration of PLCζ into the pronuclei, Ca2+

i spiking also
stops at around this time.14,23-26One would assume that the
Ca2+

i spiking has now performed its task and can be
disregarded in respect of embryo development. However
this is not the case.

It was shown some years ago that a transferred
nucleus from a fertilized one- or two- cell embryo had the
ability to induce Ca2+

i spiking and so activate an
unfertilized MetII egg following fusion of the two.46,47

However when the fusion experiment was performed with
the pronucleus of a parthenote no egg activation from MetII
arrest was seen. These observations are now easily
explained by the nuclear sequestration of PLCζ into the
pronuclei of the fertilized embryo, and its obvious absence
from the pronuclei of parthenotes. The fact that PLCζ is
stable enough in the pronucleus during the first two cell
divisions, also readily explains the observation that Ca2+

i
spiking is seen again during the first mitotic division of
fertilized embryos but not parthenotes.48 Presumably during
mitosis PLCζ is released into the cytoplasm where it can
generate inositol trisphosphate and so Ca2+

i spikes. These
spikes however appear non-essential for passage through
mitosis because if they are blocked by Ca2+ buffers then
mitosis proceeds with normal timings.49 Furthermore
parthenotes do not show these spikes and yet readily
undergo mitosis, confirming the non-essential nature of
Ca2+

i in the mitotic division.
There are however cav eats in dismissing the

importance of Ca2+
i spikes to the first mitotic division. The

first is that raising Ca2+ in G2 embryos accelerates entry
into mitosis,49 suggesting that although Ca2+ is non-
essential it can actually affect passage through this cell
cycle transition. In sea urchin embryos Ca2+

i does play an
essential role, as shown by the block to anaphase when
Ca2+

i changes are buffered.50 In mammals one could argue
that Emi2 should be absent at first mitosis since it is
degraded on exit from MetII, and if so passage through
mitosis dictated by activation of the APC/C would not be
dependent on Ca2+

i as it is during MetII arrest. Emi2 levels
have not been assessed during the first mitotic division,
however they do increase again following the cessation of
Ca2+

i spikes at pronucleus formation,42,43making it possible
that Emi2 is actually present during the first mitotic
division. This stimulates the question of what strategies the
embryo uses to degrade Emi2, because presumably this
must happen in order for the APC/C to be active during the
first mitotic division. So far only a Ca2+ dependent
mechanism of Emi2 degradation has been described. Future
studies are therefore required to assess the way in which the
embryo controls Emi2 activity.

What does fertilization-associated calcium do for
longer–term development?

Single monotonic rises in Ca2+
i are generally poor

activators of mammalian eggs. Eggs may partially complete
their second meiotic division, so extrude a polar body, but
re-arrest at a new metaphase and stay arrested without the
formation of a pronucleus.51 This is likely due to poor or
transient degradation of Emi2, whose activity comes back
and inhibits the APC/C allowing cyclin B1 reaccumulation
and MPF activity. The general exception to this is the
ability with a single Ca2+

i rise to activate eggs that have
passed the window of their normal in vivo time of
fertilization.52 Here this is best explained by the aged eggs
being less able to maintain high MPF levels. Thus the
essential nature of the oscillatory Ca2+

i signal may well be
to provide a long enough signal in which to ensure the egg
escapes meiosis.53,54 This cannot however be the sole
function of Ca2+

i because differing regimens of
experimentally-induced Ca2+

i spiking designed to give very
high rates of egg activation, do not all induce good quality
embryo development.10,55-60

In one study eggs were incubated in Sr2+-containing
medium to experimentally induce spiking in Ca2+

i for
varying periods up to 24 h.60 Here Sr2+ is acting as a Ca2+

mimetic on the egg InsP3R, which in terms of channel
opening contains both activating and inhibitory Ca2+

binding sites. Importantly Sr2+ is very much less (600-fold)
potent than Ca2+ in inhibiting the InsP3R, so effectively
sensitizes the receptor.61 It was shown that eggs incubated
for varying times in Sr2+-containing medium to produce
high rates of egg activation, go on to form blastocysts with
different numbers of inner cell mass cells and
trophectodermal cells.60 The embryos with the least inner
cell mass cells, which go on to form all the embryonic
structures, were those exposed to Sr2+ for the least amount
of time. The regime which produced embryos that were
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Figure 2. Schematic model of how early events of fertilization can influence embryo development.Some of the stages of
pre-implantation development are depicted leading up to implantation. At fertilization, Ca2+

i spiking switches on CamKII,
which has an important role to play in promoting loss, probably through degradation, of a number of proteins responsible
for arresting the egg at MetII before fertilization, and also in promoting the synthesis of a number of new embryonic
proteins through either transcription or translation. Suboptimal CamKII activation may influence embryo development by
hindering both these processes. See text for further details.

most similar in composition to fertilized eggs, were those
placed in Sr2+ media for 24 h; this period encompassing
meiotic exit and first mitosis, both periods in which Ca2+

i
spiking is normally observed. More elegant studies have
been performed by Jean-Pierre Ozil and his collaborators,
using an activation chamber in which eggs can be exposed
to a series of artificially induced Ca2+

i spikes of varying
amplitude and duration.62,63Using such a chamber in which
spike frequency and duration are altered it is clear that for
protocols which all give high rates of egg activation longer
term development is not uniform, with the quality of
postimplantation development falling off dramatically for
some Ca2+

i spiking regimes.10,56-59

At present it is not resolved how Ca2+
i spiking at

fertilization, and possibly first mitosis, are having their
effects several cell divisions later. It is proposed here that
there may be two possibilities (summarized in Figure 2).
The first is that a suboptimal Ca2+

i signal fails to stimulate
fully the degradation of proteins whose function is
essentially to help maintain MetII arrest and whose
presence could hinder the cell divisions of the embryo.
Given that MetII arrest is so successful, for good
physiological reason, and so protracted, it is likely that

other signalling pathways are recruited to maintain arrest
that are independent of Emi2. One such pathway is likely to
be the mos…MAPKinase pathway. In mouse loss of mos, a
MAPKinase Kinase Kinase, allows eggs to escape arrest
after just a few hours.64 Furthermore MetII arrest in frog
eggs appears to involve more than one signalling pathway.65

Therefore maintenance of arrest at MetII may involve
multiple pathways all of which need to be successfully
downregulated for optimal embryonic cell division.

The second possibility is that the Ca2+
i signal needs

to switch on the expression of various proteins, whose early
expression is needed for good embryo development. This
hypothesis is supported by the observations that the number
of Ca2+

i spikes experienced by an activating egg can
influence the expression of new proteins in the early
embryo10 and that new protein synthesis is required for
zygotic genomic activation.66 In regard of the ability of
Ca2+

i to influence protein expression, it is important to note
that CamKII can phosphorylate and so switch on
cytoplasmic polyadenylation element binding protein
(CPEB)67,68 to stimulate protein expression in hippocampal
dendrites through increased mRNA polyadenylation. Given
the importance of CPEB in the translational efficiency of
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certain mRNA’ s in oocytes before fertilization69 it is
tempting to speculate that Ca2+

i activated CamKII is also
able to affect protein expression through CPEB in eggs.
Zygotic transcription begins much earlier than previously
thought during the 1-cell embryo stage70-72 so it remains
possible that CamKII is involved in the expression of
zygotic proteins. Of course these two possibilities for how
Ca2+

i has long-term effects are not mutually exclusive: Ca2+
i

could be both involved in stimulating the expression of
nascent proteins (e.g. through CPEB) and also in degrading
others (e.g.Emi2). Assuming both processes are reliant on
Ca2+

i activation of CamKII, then such hypotheses makes the
actual dynamics of the signal important, since CamKII
activation by Ca2+

i is sensitive to frequency and
amplitude.73,74

Conclusions

Knowledge of how the oscillatory Ca2+
i signal at

fertilization is initiated and the downstream signalling
pathways it affects have been elucidated over recent years.
The establishment of CamKII as an important transducer of
Ca2+

i action in cell cycle resumption opens the possibility
of solving the phenomenon of how Ca2+

i can have a much
longer term effect on embryo development, several cell
divisions later, from its established role in exit from MetII
arrest. We may find that optimal embryo development is
made possible in eggs by the CamKII-mediated switching
on of genes through transcription and/or translation during
fertilization combined with the stimulated degradation of
proteins required in the protracted cell cycle arrest at MetII.
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