Ca\(^{2+}\) stores regulate ryanodine receptor Ca\(^{2+}\) release channels via luminal and cytosolic Ca\(^{2+}\) sites

Derek R. Laver

School of Biomedical Sciences,
University of Newcastle and Hunter Medical Research Institute,
Callaghan, NSW 2308, Australia

Summary

1. In muscle, intracellular calcium concentration, hence skeletal muscle force and cardiac output, is regulated by uptake and release of calcium from the sarcoplasmic reticulum. The ryanodine receptor (RyR) forms the calcium release channel in the sarcoplasmic reticulum.

2. The free [Ca\(^{2+}\)] in the sarcoplasmic reticulum regulates the excitability of this store by stimulating the Ca\(^{2+}\) release channels in its membrane. This process involves Ca\(^{2+}\) sensing mechanisms on both the luminal and cytoplasmic side of the RyR. In the cardiac RyR these have been shown to be: a luminal Ca\(^{2+}\)-activation site (L-site, 60 µM affinity), a cytoplasmic activation site (A-site, 0.9 µM affinity) and a cytoplasmic Ca\(^{2+}\)-inactivation site (I\(_{2}\)-site, 1.2 µM affinity).

3. Cardiac RyR activation by luminal Ca\(^{2+}\) occurs by a multi-step process dubbed "luminal-triggered Ca\(^{2+}\) feed-through". Ca\(^{2+}\) binding to the L-site initiates brief (1 ms) openings at a rate of up to 10 per second. Once the pore is open, luminal Ca\(^{2+}\) has access to the A-site (producing up to 30-fold prolongation of openings) and to the I\(_{2}\)-site (causing inactivation at high levels of Ca\(^{2+}\) feed-through).

4. Reviewed here are: the evidence for the principal aspects of the "luminal-triggered Ca\(^{2+}\) feed-through" model, the properties of the various Ca\(^{2+}\)-dependent gating mechanisms and their likely role in controlling SR Ca\(^{2+}\) release in cardiac muscle.

5. The model makes the following important predictions: There will be a close link between luminal and cytoplasmic regulation of RyRs. Any cofactor that prolongs channel openings triggered by cytoplasmic Ca\(^{2+}\) will also promote RyR activation by luminal Ca\(^{2+}\).

6. Luminal Mg\(^{2+}\) (1 mM) is essential for the control of SR excitability in cardiac muscle by luminal Ca\(^{2+}\).

7. The different RyR isoforms in skeletal and cardiac muscle will be controlled quite differently by luminal milieu. For example, [Mg\(^{2+}\)] in the SR lumen (~1 mM) can strongly inhibit RyR2 by competing with Ca\(^{2+}\) for the L-site whereas RyR1 is not affected by luminal Mg\(^{2+}\).

Introduction

Intracellular calcium stores are critical to the function of most cell types. Ca\(^{2+}\) uptake and release controls contraction in muscle and has an important role in synaptic transmission and membrane excitability in neurons. The primary intracellular stores in excitable cells are the endoplasmic reticulum (ER) and its specialisation in muscle called the sarcoplasmic reticulum (SR). The free [Ca\(^{2+}\)] within the lumen of the ER/SR (0.3 to 1.0 mM\(^{2-3}\)) is more than 1000-fold higher than in the cytoplasm. This large concentration gradient is maintained by the SERCA Ca\(^{2+}\) pump in the ER/SR membrane.

Ryanodine receptors (RyRs) mediate most of the Ca\(^{2+}\) release from the SR that occurs in muscle and neurons. Three mammalian isoforms have been cloned and sequenced. RyR1 and RyR2 are predominantly expressed in skeletal and cardiac muscle, respectively, and in most neurons RyR2 is the dominant isoform. RyR3 is found to some extent in most tissues. RyRs are normally triggered by electrical depolarisation of the cell surface membrane. The different isoforms mediate different modes of transduction from the electrical signal in the surface membrane to the chemical signal in the ER/SR. RyR2 and RyR3 are triggered by Ca\(^{2+}\) influx through voltage sensitive Ca\(^{2+}\) channels in the surface membrane (L-type channels called dihydropyridine receptors, DHPRs) whereas RyR1s are triggered by a direct conformational link between the RyRs and the DHPRs. Since cytoplasmic Ca\(^{2+}\) is a RyR agonist, the rise in cytoplasmic [Ca\(^{2+}\)]\(_{i}\) ([(Ca\(^{2+}\)]\(_{i}\)) that accompanies Ca\(^{2+}\) release further activates RyRs, providing positive feedback for Ca\(^{2+}\) release (this phenomenon is known as Ca\(^{2+}\) induced Ca\(^{2+}\) release, CICR\(^{6}\)). In respect of the regenerative nature of Ca\(^{2+}\) release the ER/SR is considered to be a chemically excitable organelle.\(^{4}\)

The excitability of muscle ER/SR is substantially increased by increasing the luminal Ca\(^{2+}\) load (luminal [Ca\(^{2+}\)]\(_{L}\)\(^{2-6}\)). Early studies on muscle cells and isolated SR vesicles found that the rate of Ca\(^{2+}\) release had a dependence on [Ca\(^{2+}\)]\(_{L}\) that was too steep to be explained by an increase in the [Ca\(^{2+}\)] gradient across the SR membrane (see reviews 9,10). Thus, these studies indicated that [Ca\(^{2+}\)]\(_{L}\) must somehow control the Ca\(^{2+}\) permeability of the membrane. [Ca\(^{2+}\)]\(_{L}\)-dependent Ca\(^{2+}\) release is believed to drive pacemaking and rhythmicity in smooth and cardiac muscle\(^{11-13}\) and in neurons.\(^{4}\) In heart, the free [Ca\(^{2+}\)] within the SR most likely varies within the range ~0.3 to 1.0 mM during the normal beating cycle\(^{2-3}\) but during SR overload it can increase to 5 mM.\(^{14}\) The importance of [Ca\(^{2+}\)]\(_{L}\) in cardiac function is highlighted by the cardiac arrhythmias associated with excessive [Ca\(^{2+}\)]\(_{L}\).\(^{15,16}\)

Insights into luminal Ca2+-activation from single channel studies

Experiments on individual RyRs have obtained very detailed information about the activation and inhibition mechanisms associated with luminal Ca2+. These measurements involved isolating SR vesicles from muscle and incorporating them into artificial lipid bilayers. When SR vesicles fuse with the bilayer, the RyRs embedded in the vesicle membrane become incorporated into the bilayer. Once this happens it is possible to monitor their opening and closing (gating) by measuring the current through the membrane in response to an applied electrochemical gradient. Single RyR channel currents are essentially stochastic square waves that can be characterised by their amplitude and by the dwell-time of channel open and closed current levels (e.g. See Figure 1). An overall picture of channel gating is encapsulated in the mean open and closed dwell-times (τ_{o} and τ_{c}) and by the open probability (P_{o}) this is the fraction of time the channel is in a conducting state; e.g. $P_{o} = 1$, the channel never closes; $P_{o} = 0$, the channel is completely inactive, for further details see reference 18). From these kinetic analyses, it has been possible to make inferences about the mechanisms underlying the gating processes of the RyR.

In the early 1990’s, investigations on isolated RyRs in artificial bilayers found that the activity of RyRs was indeed modulated by [Ca2+]\textsubscript{L}, but just how luminal Ca2+ was doing this was not understood. Since Fabiato6 had shown that efflux of Ca2+ from the lumen stimulates nearly all of the Ca2+ release from the cardiac SR, one could envisage that luminal Ca2+ could flow through one RyR and stimulate the opening of nearby RyRs in the cell. However, it was not clear how CICR would work in the context of an isolated RyR (Could the Ca2+ efflux through a channel further stimulate that channel to open even more?). Hence, in the following decade single-channel experiments were interpreted in two quite different ways. The “true luminal” hypothesis attributed luminal regulation to Ca2+ sites on the luminal side of the RyR20 whereas the “feed-through” hypothesis proposed that luminal Ca2+ permeates the pore and binds to cytoplasmic Ca2+ sites.21-23 In marshalling the arguments for and against these hypotheses9,10 it appeared luminal regulation of RyRs somehow involved Ca2+ sensing mechanisms on both the luminal and cytoplasmic side of the channel.

Only recently has it been possible to unravel the complex interplay that exists between these mechanisms. Experiments by Laver24 led to the proposal of a unified theory for activation of cardiac RyRs dubbed “luminal-triggered Ca2+ feed-through” which integrates the “feed-through” and “true luminal” hypotheses to provide a quantitative understanding of the Ca2+ permeability of the ER/SR. The proposal is that one luminal Ca2+ site (L-site) and two cytoplasmic Ca2+ sites (A- and I\textsubscript{o}-sites) on RyR2 determine its regulation by luminal Ca2+ (Figure 2). The RyR2 can be opened by Ca2+ binding to either the A-site or the L-site whereas Ca2+ binding to the I\textsubscript{o}-site closes the channel. In the virtual absence of cytoplasmic Ca2+, as is the case during cardiac diastole, the binding of Ca2+ to the L-site on its own can activate channel openings of ~1 ms duration at rates up to 10 s-1. Once the channel is open, the flux of Ca2+ from the luminal to cytoplasmic sides of the channel (Ca2+ feed-through) increases [Ca2+]\textsubscript{L} in the vicinity of the A-site and produces up to 30-fold prolongation of channel openings. In addition, the
cytoplasmic Ca\(^{2+}\)-inactivation site (I\(_2\)-site) causes a reduction in channel open durations at high levels of Ca\(^{2+}\) feed-through. This review evaluates the evidence for the principal aspects of the “luminal-triggered Ca\(^{2+}\) feed-through” model, the properties of the various Ca\(^{2+}\)-dependent gating mechanisms and their likely role in controlling Ca\(^{2+}\) release from the SR.

![Diagram of RyR channels with sites](image)

Figure 2. The process of “luminal-triggered Ca\(^{2+}\) feed-through” (after Laver, 2007). An illustration of the three Ca\(^{2+}\) sensing sites that have been linked to regulation of cardiac RyRs by luminal Ca\(^{2+}\): the luminal activation site (L-site, 60 \(\mu M\) affinity), the cytoplasmic activation site (A-site, 1-10 \(\mu M\) affinity) and the cytoplasmic Ca\(^{2+}\)-inactivation site (I\(_2\)-site, 1 \(\mu M\) affinity). Ca\(^{2+}\) binding at the L-site is sufficient to activate channel openings whereas Ca\(^{2+}\) flow through the channel (Ca\(^{2+}\) feed-through) causes either additional activation via the A-site or inactivation via the I\(_2\)-site. Also shown is the so-called Ca\(^{2+}\)/Mg\(^{2+}\) inhibition site (I\(_1\)-site, 10 \(\mu M\) affinity, previously referred to as the I-site). This site plays a role in cytoplasmic regulation of RyRs.

A-site for [Ca\(^{2+}\)]\(_C\)-activation

At an early stage RyRs were found to be activated by \(\mu M\) [Ca\(^{2+}\)] in the cytoplasm.\(^{25,26}\) It is now generally recognised that this is mediated by a class of cytoplasmic facing Ca\(^{2+}\) sites referred to as A-sites.\(^{27}\) In the absence of luminal Ca\(^{2+}\) or cytoplasmic cofactors such as ATP, [Ca\(^{2+}\)]\(_C\) activates RyR2 from a basal \(P_o\) of approximately zero to \(P_o\) = 0.6 with a half-activating [Ca\(^{2+}\)]\(_C\) \((K_{a/2})\) of \(-5 \mu M\) (Figure 3A).\(^{28,29}\) Activation is mediated primarily via a decrease in \(\tau\) or an increase in channel opening rate (opening rate = \(1/\tau_o\)) whereas \(\tau_o\) (~1 ms) showed only a minor dependence on [Ca\(^{2+}\)]\(_C\) (Figure 3B, C). The A-site gating properties are strongly affected by cofactors such as ATP, caffeine and sulmazole.\(^{19,30,31}\) On their own these cofactors do not trigger channel openings; instead they function to enhance RyR response to cytoplasmic Ca\(^{2+}\). The result is an increase in both \(\tau\) and opening rate which decreases the [Ca\(^{2+}\)]\(_C\) needed for activation (this is shown for the case of ATP in Figure 3). In the presence of ATP, \(\tau_o\) acquired a strong dependence on [Ca\(^{2+}\)]\(_C\) (Figure 3B).

Although the precise location of the A-site is still unknown, mutation experiments carried out on RyR1 provide an indication of its general location. Truncated RyR1s comprised of only the C-terminal 1030 amino acids (RyRC; aa4007-aa5037) formed Ca\(^{2+}\) channels with A-sites\(^{32}\) indicating that the A-site resides somewhere in the pore forming region of the RyR. Moreover, the aa4032 has been linked to the A-site gating mechanism because the E4032A substitution decreased RyR1 sensitivity to cytoplasmic Ca\(^{2+}\)-activation by four orders of magnitude\(^{33}\) (but also see Fessenden et al.\(^{34}\))

I\(_1\)-site for cytoplasmic Ca\(^{2+}\)/Mg\(^{2+}\)-inhibition

It has been long known that RyRs can be inhibited by mM cytoplasmic concentrations of divalent cations including Ca\(^{2+}\) and Mg\(^{2+}\) (~1 mM for RyR1 and ~10 mM for RyR2).\(^{35}\) This inhibitory action is mediated by low affinity non-specific divalent cation sites, previously dubbed I-sites.\(^{27}\) In order to distinguish this process from the other inactivation process (see next section) the sites are now called I\(_1\)-sites and the process is referred to as inhibition rather than inactivation. The I\(_1\)-sites, together with the A-sites, produce a bell-shaped dependence of \(P_o\) on [Ca\(^{2+}\)]\(_C\) (e.g., Figure 3A). Unlike the A-sites, the divalent cation affinity of the I\(_1\)-sites is unaffected by the cytoplasmic cofactors ATP and caffeine.\(^{27,36}\) The precise location of the I\(_1\)-site is unknown. RyRC does not exhibit Ca\(^{2+}\)/Mg\(^{2+}\) inhibition\(^{32}\) indicating that the I\(_1\)-sites reside somewhere in the N-terminal 4007 amino acids. Several studies have implicated aa1873-1903, aa1641-2437 and aa615 with the I\(_1\)-acti va tion by four orders of magnitude\(^{33}\) (but also see Fessenden et al.\(^{34}\)).

I\(_2\)-site for [Ca\(^{2+}\)]\(_C\)-inactivation

Early studies of SR Ca\(^{2+}\) release detected a Ca\(^{2+}\)-inactivation mechanism that operates at \(\mu M\) [Ca\(^{2+}\)]\(_C\). Measurements of global Ca\(^{2+}\) release in skeletal and cardiac muscle revealed a phenomenon\(^{39-41}\) in which cytoplasmic Ca\(^{2+}\) causes rapid (< 100 ms) and partial inactivation of SR Ca\(^{2+}\) release with a half-maximal effect at 0.3 \(\mu M\). The kinetics of localised Ca\(^{2+}\) release “Ca\(^{2+}\) sparks” in cardiac

Author:

Proceedings of the Australian Physiological Society (2007) 38

61
myocytes showed that termination of Ca\(^{2+}\) sparks was due to inactivation with a refractory period of 40 ms.\(^{32}\) Curiously, the advent of single channel recording did not reveal a corresponding Ca\(^{2+}\)-inactivation mechanism in RyRs until recently when it was reported that under certain experimental conditions [Ca\(^{2+}\)]\(_L\) could substantially decrease \(\tau_o\).\(^{24}\) When RyR2 was activated by a combination of cytoplasmic ATP and Ca\(^{2+}\) feed-through, \(\tau_o\) was relatively long (e.g. top trace in Figure 1A). Increasing [Ca\(^{2+}\)]\(_L\) caused a decrease in \(\tau_o\) (Figure 1A, bottom trace) with a half-maximal effect at \(\approx 1\) µM (Figure 1B). These results pointed to a Ca\(^{2+}\)-dependent inactivation mechanism that operates via a cytoplasmic Ca\(^{2+}\) site (the \(I_p\)-site) with µM affinity. Moreover, the \(I_p\)-site produced only partial feed-through because the closed channel properties such as \(\tau_o\) and opening rate should not be influenced by Ca\(^{2+}\) feed-through because the closed channel can’t conduct Ca\(^{2+}\).

The earliest demonstration of luminal facing Ca\(^{2+}\) sites was that luminal Ca\(^{2+}\)-activation could be abolished by tryptic digestion of the luminal side of RyR2.\(^{43}\) There is now good evidence for at least two Ca\(^{2+}\) sensing mechanisms for RyR2 activation on the luminal side of the membrane. Györke and Györke\(^{31}\) found that under conditions where the net Ca\(^{2+}\) flux was cytoplasmic-to-luminal, increasing luminal Ca\(^{2+}\) from 20 µM to 10 mM produced a 10-fold increase in \(P_o\). A subsequent study showed that this could not be reversed by returning [Ca\(^{2+}\)]\(_L\) to µM concentrations.\(^{44}\) The nature of this Ca\(^{2+}\) sensing mechanism was revealed to be dissociation of the luminal Ca\(^{2+}\)-buffering protein, calsequestrin, from the RyR2 which occurs when [Ca\(^{2+}\)]\(_L\) exceeds 2 mM. This mechanism could come into play when SR becomes overloaded in pathological situations of stress or cardiac ischaemia and reperfusion. In muscle, calsequestrin is trapped in the SR so that it can reassociate with the RyR once [Ca\(^{2+}\)]\(_L\) returns to physiological levels.

A second sensor for luminal Ca\(^{2+}\) (L-site, Figure 2) has been identified which regulates RyR2 activity in the physiological range of [Ca\(^{2+}\)]\(_L\) and at levels up to 2 mM.\(^{24}\) In the absence of cytoplasmic Ca\(^{2+}\), ATP and Ca\(^{2+}\) feed-through (analysis was restricted to opening rates), RyR2

L-site for luminal Ca\(^{2+}\)-activation

A clean measurement of the luminal-site mediated gating properties is difficult to achieve because the [Ca\(^{2+}\)]\(_L\) required to open the channel can also sustain a level of Ca\(^{2+}\) feed-through that could produce A-site mediated gating phenomena. Therefore, the gating properties of the luminal sites have been measured under conditions where Ca\(^{2+}\) feed-through was either small or non-existent. Experimental strategies that have achieved this are: 1) to diminish or even reverse the lumen-to-cytoplasmic Ca\(^{2+}\) flux by applying high [Ca\(^{2+}\)]\(_L\) or positive membrane voltages and 2) to restrict analysis to channel properties of the closed pore when Ca\(^{2+}\) feed-through is non-existent. Closed channel properties such as \(\tau_o\) and opening rate should not be influenced by Ca\(^{2+}\) feed-through because the closed channel can’t conduct Ca\(^{2+}\).
could be reversibly activated by luminal Ca\(^{2+}\) albeit to a much lesser extent than achievable with the A-site (c.f. maximal opening rates of 1 s\(^{-1}\) for luminal Ca\(^{2+}\) (Figure 4C) and 300 s\(^{-1}\) for cytoplasmic Ca\(^{2+}\) (Figure 3C)). Luminal activation was mediated primarily by an increase in channel opening rate with a \(K_a\) of 45 µM and Hill coefficient of 2 (Figure 4C). ATP increased the opening rate by 4-fold but did not significantly change the \(K_a\) (60 µM) or Hill coefficient (1.6). The \(K_a\) and Hill coefficient values suggested the involvement of multiple Ca\(^{2+}\) binding sites with an affinity of 60 µM which means that there could be one site on each RyR subunit. These values were also found to be independent of voltage indicating that ions did not cross the membrane to get to their effector site; further supporting the proposition that the L-site is indeed located on the luminal side of the membrane.

Ca\(^{2+}\) feed-through

There is now strong evidence that the Ca\(^{2+}\) flux through the RyR pore is sufficient to raise the local [Ca\(^{2+}\)]\(_c\) enough to cause activation of RyRs. Bilayer studies have shown that Ca\(^{2+}\) feed-through couples RyR openings such that the opening of one channel can increase the opening rate of adjacent RyRs by up to 20-fold.\(^{24,36,37}\) Coupling was abolished by either removal of luminal Ca\(^{2+}\) or by voltages that oppose Ca\(^{2+}\) feed-through. However, for isolated RyRs, it has been generally accepted that the effects of Ca\(^{2+}\) feed-through can only be observed in the channel open state properties such as \(\tau_o\).

Activation of RyRs by Ca\(^{2+}\) feed-through will be considered here first in channels that are modified by ATP because the effects of Ca\(^{2+}\) feed-through are nearly undetectable in the absence of stimulating cofactors. In the presence of ATP, caffeine and sulmazole, RyR activity has a bell-shaped dependence on [Ca\(^{2+}\)].\(^{19,21,22,24}\) In the case of ATP, increasing [Ca\(^{2+}\)]\(_c\) from virtually zero to 100 µM (at -40 mV which favours Ca\(^{2+}\) feed-through) substantially increases the activity of the RyRs whereas a further increase to 1 mM decreases channel activity. This bell-shaped dependence was also reflected in \(\tau_o\) which for RyR2, had values of 1 ms, 30 ms and 10 ms for [Ca\(^{2+}\)]\(_c\) of 0, 100 and 1 mM, respectively (Figure 4B).

This bell-shaped [Ca\(^{2+}\)]\(_c\)-dependence is clear evidence for Ca\(^{2+}\)-dependent activation and inactivation mechanisms. Several pieces of evidence suggest that cytoplasmic structures mediate these effects. Firstly, both phenomena are closely correlated with the magnitude of Ca\(^{2+}\) feed-through.\(^{21,24}\) Biasing the membrane voltage against Ca\(^{2+}\) feed-through shifts the bell-shaped [Ca\(^{2+}\)]\(_c\)-dependence to higher concentrations. Second, heavy Ca\(^{2+}\) buffering of the cytoplasmic bath alleviates inactivation indicating that luminal Ca\(^{2+}\) must be traversing the cytoplasmic solution to reach the inactivation site.\(^{21}\) Finally, the activating and inactivating effects of [Ca\(^{2+}\)]\(_c\) and [Ca\(^{2+}\)]\(_l\) are not additive. Thus luminal Ca\(^{2+}\) does not affect \(\tau_o\) at elevated [Ca\(^{2+}\)]\(_c\) and vice versa,\(^{24}\) indicating that luminal and cytoplasmic Ca\(^{2+}\) compete for the same activating and inactivating sites.

Since the A-site is the only site linked to RyR activation by [Ca\(^{2+}\)]\(_c\), there is little doubt that activation by Ca\(^{2+}\) feed-through is caused by this site. It was originally thought that inactivation by [Ca\(^{2+}\)]\(_l\) was mediated by the \(I_y\)-site\(^{25}\) because until recently this was the only form of Ca\(^{2+}\)-dependent inhibition that had been clearly identified in RyRs. However, it is unlikely that the \(I_y\)-sites are involved in luminal inactivation because inactivation has a similar [Ca\(^{2+}\)]\(_l\) sensitivity in RyR1 and RyR2\(^{21,22}\) whereas the Ca\(^{2+}\) sensitivity of the \(I_y\)-sites differ 10-fold between the two isoforms. On the other hand, the \(I_o\)-site is at least 50-fold

Figure 4. The effects of ATP on the [Ca\(^{2+}\)]\(_c\)-dependent gating of RyR2. (after Laver\(^{24}\)) (A) The open probability of RyRs (100 nM [Ca\(^{2+}\)]\(_c\) and voltage = -40 mV) in the presence of 2 mM ATP (●) and in its absence (○). Also shown are the corresponding \(\tau_o\) (B) and opening rates (C). Solid and dashed curves show the fit to the data of the “luminal-triggered Ca\(^{2+}\) feed-through” using parameters given elsewhere.\(^{24}\) The data points show mean ± sem of 3-18 measurements. Hill fits (not shown) to the opening rate reveal that 2 mM ATP increases the maximal opening rate from 0.8 ± 0.1 to 4.0 ± 0.4 without significantly changing \(K_a\) for [Ca\(^{2+}\)]\(_l\) (\(K_a = 45 ± 8 \mu M\) and 60 ± 20 µM in the absence and presence of ATP, respectively).
more selective for Ca$^{2+}$ than Mg$^{2+}$ which is consistent with the ion specificity of luminal inactivation (Laver unpublished data).

Accessibility of A- and I$_2$-sites to luminal Ca$^{2+}$

Even though the A- and I$_2$-sites have similar affinities for cytoplasmic Ca$^{2+}$ the apparent affinities of these sites for luminal Ca$^{2+}$ are more than 10-fold different. This difference is readily explained by the relative proximity of these sites to the Ca$^{2+}$ pore.21 Ca$^{2+}$ emanating from the pore will diffuse into the cytoplasm and be sequestered by buffering molecules. This leads to a decline in [Ca$^{2+}$] with distance from the pore.37,45 Therefore Ca$^{2+}$ sites that are further away from the pore will be less sensitive to the effects of Ca$^{2+}$ feed-through than sites near the pore. By fitting the “luminal-triggered Ca$^{2+}$ feed-through” model to experimental data, Ca$^{2+}$ feed-through was estimated to increase [Ca$^{2+}$] to \sim100 μM at the A-site and \sim2 μM at the I$_2$-site during Ca$^{2+}$ release.24 The calculations also placed the A- and I$_2$-sites at 11 nm and 26 nm from the RyR pore, respectively. Given that the furthest point on the RyR from the pore is \sim20 nm (allowing for components of separation within and perpendicular to the plane of the membrane46) it would seem that the I$_2$-sites are located at the periphery of the protein or perhaps even on an adjacent inhibitory protein.

Cytoplasmic agonists and luminal Ca$^{2+}$-activation

As stated above, [Ca$^{2+}$]$_i$-dependent activation of RyRs is markedly increased by enhancers of [Ca$^{2+}$]$_i$-activation.19,30,31 Early studies proposed that ATP, caffeine or sulmazole created a conformational change in the RyR protein that unmasked a luminal Ca$^{2+}$ sensing site.9 The “luminal-triggered Ca$^{2+}$ feed-through” model points to an alternative explanation for the action of ATP. When fitting the model to data such as that shown in Figure 4 it was found that the ATP effects could be explained by three modes of action.24 It increased the L-site mediated opening rate, increased τ_o in response to Ca$^{2+}$ binding at the A-site and decreased the rate of inactivation via the I$_2$-site. A substantial fraction of the ATP effect on luminal Ca$^{2+}$-activation was due to the enhanced effect of Ca$^{2+}$ feed-
through on A-site activation.24 This highlights the intimate involvement of cytoplasmic and luminal regulation of RyRs that occurs as a result of Ca2+ feed-through.

More generally, the “luminal-triggered Ca2+ feed-through” model predicts that any cofactor that prolongs channel openings triggered by [Ca2+]\textsubscript{c} will promote RyR activation by luminal Ca2+. This is illustrated in Figure 5 (A & B) which shows predictions of the “luminal-triggered Ca2+ feed-through” model. In this example an agonist causes a slight increase in channel sensitivity to [Ca2+]\textsubscript{l} (Figure 5A). This leads to a marked increase in the degree of channel activation by [Ca2+]\textsubscript{l} (Figure 5B).

This is highly relevant to the effects of RyR2 mutations associated with Sudden Cardiac Death (SCD) which are known to enhance activation by luminal Ca2+.47 It was proposed that SCD mutations in RyR2 lead to cardiac arrhythmias because they promote spontaneous Ca2+ release from the SR when the store load is increased during periods of stress or exercise.47 The model predicts that the enhanced luminal activation of mutant RyR2 can result from changes in gating associated with either luminal or cytoplasmic domains of the RyR.

The converse will be true for cytoplasmic antagonists that shorten channel openings by [Ca2+]\textsubscript{c}. Poly-unsaturated fatty acids (PUFAs) are RyR antagonists that reduce RyR2 activation by [Ca2+]\textsubscript{c}.48,49 According to the “luminal-triggered Ca2+ feed-through” model, PUFAs will substantially reduce RyR2 activation by [Ca2+]\textsubscript{l} and alleviate the affects of store overload hence protecting myocardium against overload-induced arrhythmias.

The role of luminal [Mg2+] in control of RyR2 by luminal Ca2+

Even though the physiological potential across the SR membrane is approximately zero,50 most measurements of [Ca2+]\textsubscript{c}–regulation of RyRs have been carried out at non-zero membrane potentials. This has been done to maintain a relatively large driving force on the conducting ions; thus ensuring that the current jumps signifying channel gating are large compared to the background electrical noise. The “luminal-triggered Ca2+ feed-through” model makes the rather interesting prediction that at zero volts the [Ca2+]\textsubscript{l}–dependence of \(P_o \) is nearly flat over the physiological range of [Ca2+]\textsubscript{l} (0.3–1 mM, Figure 5C & D, long dashes) because the effects of the A- and I\textsubscript{z}-sites roughly cancel. According to this prediction, variations in store load should have very little effect on store excitability; this is clearly not the case in cardiac muscle. This begs the question as to what causes SR excitability to increase with increasing [Ca2+]\textsubscript{l}? One intriguing possibility is that luminal Mg2+ is an essential cofactor for store load-dependent excitability in cardiac muscle. Although the free [Mg2+] in the lumen has not been measured, the total concentrations of Mg2+ and Ca2+ in the lumen are similar51 and calsequesmin has similar buffering properties for both ions52 so that their free concentrations should also be similar. Recent experiments (Laver unpublished data) have revealed that luminal Mg2+ inhibits RyR2 by competing with Ca2+ for the L-site. As [Mg2+]\textsubscript{l} is increased from 0 to 1 mM, the competitive binding kinetics causes the half-activating [Ca2+]\textsubscript{l} at the L-site to change from 60 \(\mu \)M to 500 \(\mu \)M which is in the physiological range of [Ca2+]\textsubscript{l}. Incorporating this effect into the model reinstates a substantial [Ca2+]\textsubscript{l}–dependence of \(P_o \) at zero volts (Figure 5D, solid line). Luminal Mg2+ does this because as [Ca2+]\textsubscript{l} increases, luminal Mg2+ becomes a less effective antagonist of L-site activation.

Luminal control of skeletal and cardiac RyRs

There appears to be little awareness in the literature of the different ways that RyR1 and RyR2 could be regulated by luminal Ca2+ even though there are marked differences in how they are regulated by the cytoplasmic milieu.25 Given the close link between cytoplasmic and luminal regulation of RyRs it would be surprising to find that luminal regulation of the two isoforms was indeed the same. One clear difference has recently come to light as a result of the different responses of RyR1 and RyR2 to ATP.24 Even in the absence of activating Ca2+, ATP can trigger the opening of RyR1 but not RyR2.21,26 Hence, at the [Ca2+]\textsubscript{c} and [ATP] present in resting muscle, RyR2 openings would be triggered mainly by Ca2+ binding to the L-site24 whereas RyR1 openings would be triggered by cytoplasmic ATP,21 thus bypassing the role of the L-site in channel activation. Preliminary data (Laver unpublished data) shows that physiological luminal [Mg2+] (~1 mM) can strongly inhibit RyR2 by competing with Ca2+ for the L-site whereas RyR1 is not affected by luminal Mg2+ at these levels. This indicates that RyRs in skeletal and cardiac muscle will be found to be controlled quite differently by luminal ions.

Concluding remarks

Luminal Ca2+ regulates RyR2 activity via Ca2+ binding to the luminal L-site and the cytoplasmic A- and I\textsubscript{z}-sites. Alterations in channel gating associated with any of these sites will alter the regulation of RyRs by luminal Ca2+. A unifying kinetic model has recently been developed that makes the first quantitative predictions of Ca2+ permeability of the ER/SR. This model demonstrates how luminal control of Ca2+ release can be changed by pharmacological agents such as ATP, caffeine and PUFAs as well as RyR2 mutations associated with sudden cardiac death. The model predicts that Ca2+ and Mg2+ are effectively the yin and yang of SR excitability.

Acknowledgments

Thanks to Katherine Bradley for helpful comments and proof reading of the manuscript. DRL was supported by a Senior Brawn Fellowship from the University of Newcastle. This work was supported by the Australian Research Council (grant number DP0557780) and by an infrastructure grant from NSW Health through Hunter Medical Research Institute.
References

20. Sitapesan R and Williams AJ. The gating of the sheep skeletal sarcoplasmic reticulum Ca\(^{2+}\)-release channel is regulated by luminal Ca\(^{2+}\). J. Memb. Biol.1995;146: 133-44.
22. Xu L, and Meissner G. Regulation of cardiac muscle Ca\(^{2+}\) release channel by sarcoplasmic reticulum luminal Ca\(^{2+}\). Biophys. J. 1998; 75: 2302-2312.
29. Xu L, Mann G, Meissner G. Regulation of cardiac Ca\(^{2+}\) release channel (ryanodine receptor) by Ca\(^{2+}\), H\(^{+}\), Mg\(^{2+}\), and adenine nucleotides under normal and simulated ischemic conditions. Circ. Res. 1996;79: 1100-9.
31. Gyorke I and Gyorke S. Regulation of the cardiac
ryano dine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys. J. 1998; 75: 2801-10.

41. Kwok WM and Best PM. Calcium-induced inactivation of calcium release from the sarcoplasmic reticulum of skeletal muscle. Pflügers Arch. 1991; 419: 166-76.

Author for correspondence:

Dr Derek Laver,
School of Biomedical Sciences,
University of Newcastle and Hunter Medical Research Institute,
Callaghan,
NSW 2308, Australia

Tel: 61 2 4921 8732
Fax: 61 2 4921 7406
E-mail: Derek.Laver@newcastle.edu.au