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Inhibitory interneuronsin the piriform cortex
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Summary some detaif’® In contrast, much less is kwo about

- ) L inhibitory interneurons in the PCThe aim of this reiew is
1. The piriform corte (PC) is the lagest subdiision bring together what is currently kmo about PC

of the olfactory corte and the first cortical destination of jnierneurons in an attempt to foreshadend stimulate
olfactory information. Despite the relaly simple {,iyre work in this area.

anatomy of the PC and its vibus appeal as a model
system for the study of cortical sensory processing, there
are mag outstanding questions about its basic celp
physiology Here, we reiew what is knevn about
GABAergic inhibitory interneurons in the PC.

2. GABA-containing neurons in the PC are
morphologically dierse, ranging from small neurogliaform
cells to large multipolar formsSome of these classes are
distributed across all three main layers of the PC, while
others hae a nore restricted laminar expression.

3. Distinct and werlapping populations of
GABAergic baslet cells in Layers Il and Ill of the PC
express diferent combinations of calcium-binding proteins
and neuropeptideskFew Layer | interneurons expressyan
of the molecular markers so far examined.

4. The intrinsic firing properties of one or dwypes

inhibitory postsynaptic responsessadren recorded in PC
pyramidal cells following extracellular stimulation.III
However, little is known about the pisiology of identified
subtypes of interneurons.

5. In view of the likely importance of PC o .
interneurons in olfactory learning, atftory coding and Figure 1. Schematic diagram of the location and anatomy

epileptogenesis, further study of their properties isljiko  Of the piriform cortex. A, \entrolateal aspect of theat

be highly informatie. brain, showing the olfactoryutb (OB), lateral olfactory
tract (LOT), and the locations of the anterior and posterior
Introduction piriform cortex (@PC and pPC, respectively), whiare

) ) ) appoximately demarcated by the dashed.link rhinal fis-

Olfactory corte is usually defined as thosegiens gy, Acoronal slice of the aPC, taken between theas,
that recere monosynaptic input from the aittory ilb.  spows the laminar structerillustrated schematically in
The largest of these regions is the piriform coffeom the panel B. B, The three main layerof he PC. At left is a
Latin pirum, pear), sometimes called primary afory sgematic epresentation of the density of neuronal somata
cortex. The piriform cortex (PC) is a phlogenically- iy eat layer showing the high density of mainly principal
ancient, strongly-laminated coxtevith only 3 main layers ce|is in Layer II, and a lower density of neurons in Layler
(cf. 6 in the neocorte). Its comparatiely simple anatomy  anq |1, Schematic digrams of the dendritic ées of the
coupled with an increasing understanding of the |_nputstwo main types of Layer Il principal cells (SRperficial
receves from the olactory bulb, hee lead to a gnwing  pyramidal; SL, semilunar) and one type of Layer I1l princi-
mterest in the PC as a model system in which to stu%| cell (DP deep pyramidal) a shown in gey Schematic
cortical sensory proce_.\ssn’\tj. _ diagrams of the dendritic ¢tes of four types of GARrgic

As in other cortical areas, the PC contains glutamat@erneuons ae siown in blag (B, bitufted:; G, neuwgi-
releasing principal neurons and a much smaller number%rm; H, horizontal: M, multipolar). The scale bar is

GABA-releasing inhibitory interneurons.The principal approximate Adapted from Neville and Haberly (2004).
neurons, particularly those in the densely-packed input

layer of the PC, Layer Il (Fig. 1B), ¥ keen studied in
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Intensive work in the hippocampus and neocartes containing interneurons range from <15% in aPC of
revealed a large dersity in interneuron classes in theseopossun’ to >30% in pPC of rat®22 A common type of
brain rggions!'1# In order to ma& snse of this diersity, interneuron in Layer 1l is the large multipolar cell (M,
interneurons are commonly cgteised under three main Figure 1B)! This has long sparsely-spirdendrites and
headings:  morphology molecular markers, and axons that branch into widespread arbav&any of these
physiology'® We will make use of these headings in ourcells hae pofuse axonal arborizations in Layer II, with
review of what is currently known about PC interneuronsevidence of perisomatic boutori. they are most likely to
We will finish by briefly reviewing the possible olvement be basket cell¥22 The same class of cell is also common
of PC interneurons in attory learning, olfactory coding, in Layer lll, particularly in the more superficialgiens

and epilepsy. closer to Layer Il. Presumably these cells are important for
feedback-inhibition onto the Layer Il principal neuroms.
Morphology second class of baskcell, also found in Layer Il and upper

theLayer lll, is a bipolar or bitufted form with evtically-
oriented smooth dendrites that cattead into Layer b (B,
Figure 1B)!6:17:22 With this morphologythese cells could
provide both feedforward and feedback perisomatic
inhibition of Layer Il neuron$:’

Layers Il and Ill also contain small neurogliaform
cells similar to those in Layer IFinally, deeper Layer Il
contains a ariety of smooth multipolar cells with their
dendrites largely restricted to Layer Ill and an unkno
axonal arborization (M, Figure 183

To sum up, interneurons in the PC are characterised

y morphological diersity, as in dher corte, but a number

f broad classes can be identified. These include small
neurogliaform and large multipolar cells, which are found
in all layers, and horizontal cells, which are gkly
confined to Layer la.

The rodent PC is located bilaterally in
ventrolateral forebrain, where it reges drect input from
the olfactory hilb via the lateral olfactory tract (LO
Figure 1A). The PC is commonly uiiled into anterior
(aPC) and posterior (pPC)giens, with the boundary at the
caudal end of the LD A coronal slice taken from the
aPC has the typical trilaminar structure who
schematically in Figure 1BLayer | contains manaxons
and dendrites Wt only a fev neuronal somata. The more
superficial part (Layer &) receves dferent axons from the
LOT, whereas the deeper part (Layer b) receves
associational fibres from within the PC. Layer Il is densel
pacled with the somata of glutamagér principal neurons,
the main input cells of the PC, andaay is often diided
into superficial 4 and deep i) sublaminae. Layell
contains a lever density of neuronal somata andellkayer

| b, a ligh density of associational fibres. Molecular markers
The location of the soma and shape of the dendritic
tree hae taditionally been used to classify interneuron Interneurons are commonly classified by their

morphology and these do provide clues about the synaptexpression of tw types of molecular markers: calcium-
inputs recaied by interneurons and their Bky function. binding proteins and neuropeptidesAlthough the
This approach has been applied in the PC, whephysiological role of these proteins in interneurons is often
interneurons with dendrites restricted to specific laminaenclear they nevetheless hee empirical value as
have keen identified (see bel).> More recentlyhoweve, corvenient tagd?!* The calcium-binding proteins
the pattern of axonal projections of interneurons has beparvallumin (PV), calbindin (CB) and calretinin (CR) are
regaded as more informat!* By this criterion, reasonably reliable magks of interneurons and maim the
interneurons are of wvmain types, perisoma-targeting andhippocampus and neocaxtexpress at least oré. In those
dendrite-tageting. Inthe PC, a population of GA&ergic regions, PV interneurons tend to be perisomagtting
baslet cells has been identified in Layers Il and lll, theells, whereas CB and CR interneurons are often
axons of which are kmn to target the somata of principaldendrite-targeting®14 The best-characterised interneuron
cells located in Layer H® Little is known about the axonal neuropeptides are somatostatin (SOM), chaikinin
projections of other classes of interneurons in the PC. (CCK), neuropeptide Y (NPY) andasoactie intestinal

The majority of the sparse neurons in Layer | appeaeptide (VIP):42* SOM' interneurons in the neocoxtere
to be GAR\ergic1”18 In Layer la of the aPC, close to the mainly dendrite-targeting, whereas CCkterneurons in
LOT, are found lage horizontal cells with their moderately-the hippocampus mainly target the sotha.
spiry dendrites mostly confined to Layeral (H, Figure Focusing first on calcium-binding proteins, a strongly
1B).1%21Hence, horizontal cells would regeinost of their layerdependent expression is apparent in the PC (Figure 2).
excitatory input from the L®, and so might provide feed- No PV* or CB' interneurons are found in Layeffé and
forward inhibition onto principal cell dendrités. the small number of CRcells may be sxcitatory?>27 In
Distributed throughout Layer | are small, gldér contrast, in Layer lIl25% of interneurons are P\and
neurogliaform cells with thin, smooth dendrites and axonall0% are CB, with most (80%) of the CB cells also
arbors that ramify locally (G, Figure 18}?°Finally, Layer expressing P¥® In Layer Il an @en larger proportion of
| also contains lager multipolar cells with dendrites thatinterneurons contains these proteins, although the velati
extend further than those of neurogliaform cells, althouglequeng of PV* and CB interneurons is rersed:[B0%
their form is very variable (M, Figure 1B}:2022 of cells are CB and [(50% are PV, with most (95%) of

In Layer ll, estimates of the fraction of GAB the PV cells also gpressing CB%26 These CB and/or
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PV* neurons hee various morphologies, ranging from Physiology

globular to lage multipolarit®22Interestingly mary of them S _ _

give lise to prominent perisomatic boutons in Layer II, The electroppsiological properties of interneurons
identifying them as the Layer 11/l bask cells described €an be divided into tw categories: intrinsic andrinsic.
abo/e 162226 | ayers 11 and Il also contain small numberdntrinsic  properties include resting potential, input

of CR* interneurons with bipolar or tufted morphologiesreSiStance* and the firing pattern of action potentials (APs)
and unknown axonal projectioR. evdked by a long current step at the soma. In the neogoprte

interneuron APs are consistently briefer than those of
excitatory cell§!, but their firing pattern aries widely
between interneuron typedMany descriptve terms hae
been usede.qg. fast-spiking, late-spiking, irregular spiking
(Figure 3)!>32 Extrinsic properties typically refer to the
behaiour of synaptic and ap junction connections
between pairs of interneurons or between interneurons and
excitatory cells. For example, inhibitory synaptic currents
between neocortical interneurons can vary in their kinetics
and short-term plastici{?:**

A

Figure 2. Schematic illustration of the distribtion of

neurons expressing dérent molecular marlers (PV, par-

valbumin; CB, calbindin; VIPvasoactive intestinal peptide;

CCK, dolecystokinin). Thethin lines epresent axons, ]
which mostly form basket synapsegresented by semi-

circles), with fewer synapses in Layer IDnly a subset of B
‘typical’ cell types is shown.

40 mV

Turning to the neuropeptides, NPSOM, VIP and
CCK are all &pressed more sparsely in the PC than the FM/V
calcium-binding proteirt§ but, again, there is a pronounced

laminar specificity in their distritions?-3° Similar to the

calcium-binding proteins, %e neuropeptide-posite C
neurons are found in Layer | and most are confined to

Layers Il and 1111630 VIP* GABAergic neurons are mostly

bitufted cells with their somata located in Layea (Figure

2).1629 Their axonal arbors formxeensie perisomatic

contacts, mostly in Layer b, identifying them as a subtype

of basket cell, but theaso send axons into Layer Ill. J
CCK" GABAergic neurons often ha snall glotular _—
morphologies with their somata distributed throughout 200 ms

Layer Il and, occasionallyin Layer Il (Figure 2)6:28

Larger multipolar CCK cells are also seen, particularly inFigure 3. Examples of dférent patterns of action poten-
Layer Ill. Like the VIP cells, CCK neurons form tial firing in response to a current step, recorded in
extensive aonal arbors around somata in Layer Il, withnterneurons in slices of mouse PC using the whole-cell
some collaterals in Layer Ill. Hence, these neurons are aR@ich clamp tedinique. A Fast-spiking cell in Layer III.
baslet cells. Little information is aailable about the B, Late-spiking cellin Layer IC, Irregular-spiking cell in
morphologies of NPYor SOM-containing interneurons in Layer lll. (Suzuki and Bekkers, unpublished data.)

the PC.

In summary PC nterneurons canxpress diferent Intrinsic properties of PC interneurons were first

combinations  of ~ calcium-binding  proteins  andyegcriped inin vivo experiments using bothxeacellular

neuropeptides, as in other braingimns. Expressiorof 504 sharp intracellular recordindfs®” These described
these molecular maeks is strongly laminar-specific in the o etitisely-firing putative interneurons in the deeper part of

PC, being more common in the deeper layers (Layers Il aigyer 1. Since then there fa keen only a fe reports on

II) and often associated with basket cells. the intrinsic properties of PC interneurons in slices.
Regularspiking putatve interneurons of unkmen
morphology at the Layer II/lll border @ keen described
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using sharp electrodé®3® and the passé and firing
properties of Layer Il non-pyramidal cells vga keen

dendrites could modulate olfactory learniig?
Interneuron control of long-range connections is

measured using whole-cell patch clampihg.These suggested by the prominence of electrical oscillations in the

experiments confirmed that some interneurongehagher

PC when it is performing an alétory task®5! Similar

input resistances[B5 MQ cf. (60 MQ) and smaller AP oscillations are seen in the hippocampus and neagorte

widths (0.5ms cf. 1.4 ms)than pyramidal cells, and are where

the participation of interneurons has been

able to fire at higher rates x). In another series of established?®2 It is possible that networks of interneurons

experiments  using  extracellular  unit

recordingsin the PC, as in other brain regions, provide a global clock

a,-adrenoceptor and monoamine receptor agonist® hahat synchronizes the firing of action potentials, a process
been reported to directly depolarize Layer Il/lll pwati that may be important for olfactory codipf®

interneurons, increasing inhibitory @i anto PC yramidal
cells838:40

A final example of function is pvaled by
interneuron imolvement in a brain pathologgpilepsy The

Extrinsic (synaptic) properties of PC interneuron®C, like the hippocampus, is strongly epileptogetfic.
were first inferred fronin vivo experiments describing both Unsurprisingly inhibition has been shown to limix@essie

feedback and feedfoawd inhibition onto PC yramidal

excitability in the PC in seeral models of epilepsy->° For

cells10:3537 Subsequent wrk done in slices has focused oninstance, in arin vivo kindling model it was shown that a
recording inhibitory postsynaptic potentials (IPSPs) angrecisely-timed IPSP is critical for limitingxeessie

currents (IPSCs) in pyramidal cells falling extracellular

stimulation. InterestinglMlPSPs tend to be depolarizing at

excitation in PC pyramidal celf.

In conclusion, this brief rgew of inhibitory

rest in Layer Il pyramidal cells because these cellg hainterneurons in the PC has shown that this field is inyman

strongly n@aive resting potentials {75 mV)X* The
functional consequences of thisveaot been gplored. It
has been reported that IPSCs in pyramidal ceN® h&o

kinetically-distinct components with decay time constantisnportant for

respects derra incognita Howeve, it has already been
established that the PC contains a rich asdihating duna
of interneurons, the study of which is certain to be
our future understanding of afory

(110 ms and¥0 ms,with the latter more prominent in the processing.

dendritest4® Using local etracellular stimulation and

focal application of antagonist, it was also concluded thAxcknowledgements

two lamgely independent circuits generate GXeéBgic
inhibition in the perisomatic and distal dendritigimns*3
Laminar diferences in neuromodulation of IPSPséddso
been reportedFor example, cholinegic** and muscarini®
agonists inhibit IPSPs produced by Layeb btimulation
more than those produced by Layeardtimulation.
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