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Summary identifying and characterisingek gructural elements of the
) o DHPR II-1ll loop involved in the biophysical interaction
1. The DHPR -l loop is an intrinsically ith the RyR1, and he recently turned our attention to

unstructured region made up af-helical and B-turn iqentifying the area of interaction on the RyR1e \ave
secondary_ structyre_ elements with the N & C termini iBrevioust suggested that this interaction eak place
close spatial proximity. _ o . through a SPR domain!415SPRY domains are recognised

2. The DHPR II-lll loop interactsn vitro with & 55 protein interacting modules and were so-named because
RyR1-SPR domain througtu-helical segments located in ha, were identified in @Dictyostelium discoidueuraplA
the A and B regions. Mutations within the A & B regions ingnase and in the mammalian RYRTheir specific role in
the DHPR II-11l loop alter the binding fafity to the SPR2 14 RyR has not been pieusly assigned and ourork

domain. _ . represents one of the first reports to ascribe a functional role
3. The A & C peptides dered from DHPR Il aineitin vitro) to any of the three SPRdomains present in

loop shev negdive woperatity in binding to the SPR2 5| of the RyR isoforms. The gion of RyR1 that interacts

domain. with the DHPR II-Ill loop rgion has been pviusly

4. The SPR'2 domain of RyR1 (1085-1208) forms &gported to imolve residues 1085-11128 and this rgion
B-sheet sandwich structure flanked layiable loop rgions. ovelaps with the second of the three SPRomains
An acidic loop region of SPRY2 (1107-1121) forms part O(SPR,(Z’ residues 1085-1208). Our immediate aim is to
a regdively charged cleft that is implicated in the bindingmap the interaction site of DHPR II-1Il loop and SPR
of the DHPR II-111 loop. _ . domain of RyR1, thereby allang this information to

5. The mutant E1108A located in thegagvely imately be &ploited in futurein vivo studies. NMR is
chaged loop of SPRY2 reduces the bindingrétly to the  ,ne of a multitude of biopsical techniques capable of
II-111 loop. shedding light on the direct molecular interaction between
the DHPR and RyR1 moleculegjtbhas the advantage of
directly detecting interactions of indlilual residues in a

The cytoplasmic loop between the second and thifuid ervironment. Herewe irnvestigate the molecular
transmembrane domains (II-1ll loop) of the elital interaction of the II-1ll loop fragments with the aid of NMR
al-sulunit of the dilydropyridine receptor (DHPR, ) has complemented by  structural homology — modeling,
been identified as an important region forvivo andin  fluorescence-binding and site-directed  mutagenesis
vitro interactions with the skeletal ryanodine receptdiechniques.
(RyR1)!* In vivo studies of skeletal DHPRx,-null
myotubes gpressing various DHPR ¢ sulunit constructs
shav that the sequence of residues 720-765 (Glorg The 1I-1ll loop is a 126 amino acid fragment of the
within the II-11l loop is essential for skeletal EC couplig. pHPR and is located in the cytoplasm between theutéub
In vitro, there is a strong interaction between RyR1 ang,y SR membrane of the triad junction. The structure of
smgller peptide fragments belonging to the N-terminal fis fragment has beexamined by NMR and found to be
region (residues 671-690, defined by El-Hayek al, composed of a series af-helical andp-turn secondary
1999) and wealer interactions with the C region residues;irycture elements with the N & C termini in close spatial
(720-765)35° The A peptide and its structural/functionalproximity (Figure 1b)i5 Despite the presence of these

Introduction

Structur e and interacting sites on the DHPR II-ll loop

analogues, Imperatoxin A and Magroc:lglcina(dwhacome secondary structure elements, the II-lll loop is lacking a
useful tools in studies of RyR functiéfr'* Much attention  giape tertiary conformation and hence has been designated
has focused on the functional characterizationaoiows Il- - 4 intrinsically unstructured proteiriThe 1111l loop has

Il loop interacting regions, but fe studies thus far h® peen noted to bindn vitro to a rgion of the RyR1
concentrat_ed on strycturally mapping micrc_)dqmain_s in th%cognised as a SPRiomain with a K of 2.3 UM.15 This
RyR that interact with the DHPR vitro. This is chiefly s the second of the three SPRIomains located in the
because both DHPR and RyR are large, multidomajgyry (SPRY2) and the first time that a binding interaction
membrane protein systems that are notoriousfficdif to 55 peen assigned toyaof the three SPRdomains in ap
study in vitro. Our group has been responsible foly the RyR isoforms. The interactinggiens on the II-lIi
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DHPR lI-1ll loop interacts with RyR1 SPRY?2
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Figure 1. Thell-111 loop structure of the skeletal DHPR. a: The linear structug of the Il-lll loop (126 amino acids) is

subdivided into fouregons according to El Haye&t al® Regions of helical structer are shown.b: A duster of 34 NMR
derived structures for the 1I-1l loop calculatedfn NMR constraints (NOESs, dihedral angf§, chemical shift values and
PRE constraints) (left) and mean struguright). Prominent structural features include the helicale§an (arrow) and
the close proximity of the N and C termini.

loop have teen identified by NMR and are located within

the A region (670-685), the B region (696-707) and @able 1. Binding constants (J§ of the DHPR II-lll loop
hydrophobic stretch in the D region 7fF789) with the wild-type/mutants to wild-type RyR1 SPRY2 (seeeCal,
principle site of engagement being the basic fiae 2008° for methods).

(Figure 1a). As a result of thisonk, it was of interest to

modify these rgions and assess the impact of their residues DHPR II-11l loop Ky (uM)

in the molecular recognition of SPRY2.eWreviously Wild-type 23+01
mutated a positely charged sequence within the Agien -

(°8IRRKRK®89) resulting in the reduceit vitro binding by gggg&%ﬁimA\/DAG 18.8+0.4
(B fold. In this current studywe have expanded this - 0

mutagenesis analysis by altering residues in the B and D 7Boreg%14mutant 3.2£0.2
sgments of the II-lll loop that & been implicated in KK™ 10 AA

binding in previous NMR studies (see @ial, 2008 for D regon mutant 24+0.1
methods). These residues includeo tpositively chaged "TFFIF’82to AAAA

residues in the B gion (°KK7%) and the lydrophobic A & B regon mutants 12146.2

residues 7°FFIF'®) in the D region. The mutations in the
B regon produced &1.5 fold reduction in binding, but no Allosteric effects of A & C -1l loop peptides with the
change with the hydrophobic mutantaifle 1). Since the SPRY2 domain

A&B regions are imolved in binding to SPRY2, the

681RRKRK685 and 703KK704 mutations were combined and The individual A and C peptides of the II-ll |00p are
the binding affinity was reduced to 121+16.2 pM, a known to elicit a functionain vitro response upon addition
60-fold reduction relaie © the WT SPRY2 (Table 1). to RyRT®¥2land both of these peptide fragments also
These results indicate that the A & @ms of the 1I-11l bind with weak to moderate afflnlty to the SPRY2 domain
loop bind in a synefistic manner to the SPRY2 domain. Itof RyR1'® These findings heever, ae not easily
also suggests that the hydrophobic residues located in thééconciled with our NMR results which indicate that the
terminal portion of the II-1ll loop are unky to directly intact DHPR II-lll loop interacts with SPR mainly
participate in SPRY2 binding; instead, itwdlvement is through the A region and not the @ien." This raises the
most probably a secondary effect resulting from theossibility that the C region fragment may indeed be
structural perturbation of the region which result fron¢apable of binding separately to SPRY2 but, on the whole,

binding of the A and B helices of the II-I1l loop. 1I-11l loop accessibility of this rgion to its binding site may
be occluded in some manner due to the tertiary structure of
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Figure 2. Homology model of the RyR1 SPRY2 domain. a: A nodel of the structer of he SPR2 domain showing a
Ssandwit fold core, fanked by seeral regons. The major loop in SPR is highlighted in bldcand contains seeral

acidic residues that contribute to a negativehaged regon on the molecule surfacd: Electrostatic surface map of
SPRY2 (gneimted using Pymol — DelLano Scientific) with electrostatic potentials shown in blue and red for the positively
and negatively chged regons, respectivelyThe double arrow curve denotes a potential negativelygeaaninding site.

the full 1I-11l loop. In an attempt to determine whether theHomology model of the SPRY2 domain of RyR1

A and C regions of the IlI-lll loop bind independently ) o
competitive tinding studies were set up by monitoring the ~ Since the structure of the SPR domain in RyR1
fluorescence signal upon addition of these tpeptide Nas not been determined, a homology model ofYZRkas
fragments. Table 2 s that each peptide is capable ofréated in order toveluate potential II-lll loop binding
binding to SPR2 in the presence of the othboweve, the  Sit€S within this domain. This was acred through the
binding affinity of both peptides is reduced byaatér of 2 multiple allg_nment of the 'sequences of three published
when thg are added togethecompared to their ingidual SPRY domain structures with tha2t4 of SFR from RyR1
binding affinities. This suggests that each of the bindirt?s'”g_the program HMMER 2.3222*The published SI32R
sites is compromised in someyvby the interaction with domain structures were of FPFEPRY-19013.4.F°
the other peptide either directigr by an #osteric efect. B30-2/SPR domain of GUSAV_USZG and _555'27 (PDB
These results are consistent with a set iof viro D codes 2fbe, 2fnj and 2afj, respeety). Models of
experiments where the addition of peptide C blocks thePRY2 were created with the program MODELLER 8V1
peptide A interaction by interfering with peptide A binding'Sing the abee multiple alignment and the three SPR
to the RyRT22 These results shothat under particulain structures as the template. When the sequence afrkno

vitro conditions, the C gion of the II-Ill loop may be SPR/ ~ domain  structures  (PRSPRY-19q13.4.1,
capable of binding to SPRY2. B30.2/SPR domain of GUSAR/US and SSB-2) were

aligned with SPRY2, a sequence conadon for the
[3-sheet core was observed. From the multiple alignments a

Table 2. Binding constants (§ of the DHPR II-lll loop  homology model of the structure of SPRwas constructed
peptide fagments to wild-type RyR1 SPRY2 (seeéfull, and is presented in Figure 2Zhe main feature of this
2008 for methods). model is af-sheet sandwich structure that is fladkby
several loop rgions. The secondary structure elements of
DHPR peptide fragment HKuMm) SPRY2 was confirmed experimentally by using circular
A (5"*Thr-599_eu) 8.3+ 0.3 dichroism which reealed a minimum at[215 nm
C ("*Glu-"%%ro) 20.6+ 0.4 (characteristic of a higB-strand conterif). A significant
A + saturated C 17.205 feature of this structure is a loop region spanning residues
C + saturated A 41.3 0.6 1107-1121 which is unique amongst the three YSPR

domains present in RyR1.a\ravetermed this rgion the
major loop. This major loopcontains an abundance of
acidic residues that contribute to agaéve daige running
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DHPR lI-1ll loop interacts with RyR1 SPRY?2

from the loop down the molecule (Figure 2b). Because the
A regon in the II-lll loop is very basic, it is feasible thatTable 3. Binding constants (i of the RyR1 SPRY2 wild-
this region may interact with an acidicgien in SPR2. type/mutants to wild-type DHPR II-1ll loop (see Gtial,
The electrostatic map of the homology model of PR 2008° for methods).

shavs regions of ngetive surface charge interlaced with

smaller positie and hydrophobic patches (Figure 2b). One SPRY?2 Domain K (UM)

of these regions she a high lgel of negdive darge

. . WT-SPRY2 2.3:0.1
running along the surface of the molecule (see Figure 2b,
curved double arn), which we suggest may form part of a 1107PE|_XRE|;g]\thEaCEEADEL1120 6:3+03
1I-111 loop binding site. .
Specific mutations in a negatiely charged loop region of 1107PALRPAVA LGAAAL 1120
SPRY2 x 3 mutant 6.3+0.2

. . . . 110’PE RPDVELGADE|1120
In order to iwestigate the imolvement of the major to

loop in SPR2 in the interagtion with the basic A regipn of 1107pA1 RPAVA L GADEL 1120
the DHPR II-lll loop, alanine scanning mutagenesisw E1108A 81+ 03

performed for the acidic residues in the loopgioa
(1107-1121). A set of favmutations vas examined (E1108,
1112E, 1114E, 1118D and 1119E) both individually and ificknowledgement
combination. When all fiv residues were mutated a
reduction in the binding fifiity by (-3 fold was obseerd
for the II-11l loop (Table 3). When the mutants were probe
individually, it was found that only the E1108 mutant
significantly affected the binding. The reduction in bindingReferences
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