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Potential role of nitric oxidein contraction-stimulated glucose
uptake and mitochondrial biogenesisin skeletal muscle
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Summary uptale in keletal muscle bt it has no effect on contraction-
o o . . stimulated glucose uptek Possiblecandidates igulating
_ 1. This review will discuss the potential role of nitric g),cose uptai during exercise include calcium-calmodulin
oxide (NO) in the (i) regulation of skeletal muscle glucosgependent protein kinase 1l (CaMKIl), protein kinase C,
uptale during eercise and (i) the adtétion of AMmPp-activated protein kinase (AMPK), reacti oxygen
mitochondrial biogenesis aftexecise. o species and N (See Figure 1). It is likely that more than
2. We haveshawn in humans that local infusion of @ gne regulator is irolved in the control of skeletal muscle
NO synthase (NOS) inhibitor duringxeecise attenuates glucose uptak curing exercise, and that some redundgnc
increases in skeletal muscle glucose uptakithout eysts The first half of this wew will focus on the
influencing blood fla. Recent studies from our Iaboratorypotentia| role of NO/NO synthase (NOS) in contraction-

in rodents support these human findings although rodeftyylated glucose uptakn skeletal muscle.
studies from other laboratories vieayielded conflicting

results. Does NO/NOS regulate contraction-stimulated glucose

3. There is clear evidence that NO increasegptake?
mitochondrial biogenesis in non-contracting cells and also ) )
that NO influences basal skeletal muscle mitochondrial ~ The production of NO is catalysed by NOS enzymes
biogenesis. Therehae, howeve, been fev studies Which cowert L-aginine to L-citrulline and NO.NOS
examining the potential role of NO in the aetion of actvity increases in sietal muscle duringin situ
mitochondrial biogenesis folldng an acute bout of contracUon_%an(_:I duringn vivoexarcise in ratd (Figure 1). _
exacise or in response toxecise training. Early The resulting increase in NO release from contracting
indications are that NO is notviolved in regulating the musclé® and contracting ceft$ can be preented by NOS

increase in mitochondrial biogenesis that occurs in respod-EQibitiO”-S'10 NO binds to the haem group of soluble
to exercise. guarylate cyclase (sGC), producing the second messenger

4. Exercise is considered the best yargion and CYclic guanosine monophospate (cGMP) (FiguredGMP
treatment option for diabetes,utb unfortunately many ~ncréases duringn vitro muscle contractions in mice and
people with diabetes do not or can neereise rgularly, this increase in cGMP is prented by NOS '”h'_b't'Oﬁ? _
Alternatives therapies are therefore critical tofefively In skeletal muscle, neuronal (n) NOS is the primary
manage diabetes. If eletal muscle NO is found to play ansource of NO production during contraction’? Indeed, -
important role in regulating glucose upgakand/or skeletal muscle cGMP concentration increases during

mitochondrial biogenesis, pharmaceutical agents desigrig@traction in endothelial (e) NOS knock-out mieg bot
to mimic these xercise efects may impree dycaemic nNOS knock-out micé? There is very little gpression of

control. inducible (i) NOS in normal skeletal muséfet>We found
that infusion of the NOS inhibitoN®-monomethyl-L-
Skeletal muscle glucose uptake during exercise amginine (L-NMMA) in to the femoral artery during/cling

exacise substantially attenuated the increasegdrglecose
Skeletal muscle accounts foves 80% of whole body uptale in fhealtty young indiidual$ and especially in

insulin-stimulated glucose up@k Peoplewith type 2 pegple with type 2 diabetdsimportantly local infusion of
diabetes hee rormal levels of the Glucose fansporter e NOS inhibitor had no fefct on ley blood flow, aterial
GLUT-4 in their skeletal musclesibGLUT-4 translocation pjqod pressure, or insulin and glucose concentrations
and glucose uptakin response to insulin is reduckd. during eercise3f These studies suggest that NO is required
Importantly ~ howeve,  seletal muscle  GLU®  for normal increases in glucose upatuuring exercise in
Franslocatloﬁ and glucose uptakduring exercise is normal  pmans. W dso found that infusion of the NOS precursor
in people with dlabete°slnd_eed, blood glucosevels can | _arginine (0.5 g/min) during prolongedecise in healty
decrease to normalels during 45 min of intensexercise  young men significantly increased glucose disposal during
in people with type 2 diabetés. _ _exacisel® It has been shown that L-arginine increases
The signalling  pathey(s) associated With ha55] NO production by rateletal musclén vitro'® so we
contraction-stimulated  glucose upgakae not fully assume that the Lginine infusion increased eletal
understood, but are known to differ from insulin pad®  ,uscle NO production duringercise.
For example wortmannin, a phosphatidylinositol 3-kinase It should be noted that in our human studies we did

(P13 kinase) inhibitgr blocks insulin-stimulated glucose ot examine whetherxercise increased NOS activity and
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Figure 1. The potential regulation and regulating path-
ways of skeletal muscle glucose uptake during contrac-
tion/exercise with a focus on nitric oxide. Superoxide

(O,7), Nitric oxide (NOe), newnal isoform of NO syn-
thase (nNOS),

calcium-calmodulin  dependentotgin

kinase Il (CaMKIl), Potein kinase C (PKC), hydgen per-
oxide (HO,), AMP-activated mtein kinase (AMPK), pr

tein kinase G (PKG),cyclic guanosine monophosphate

(CGMP).

C57BI6 mice (Merryet al. unpublished obseations).
Since there is no blood fio during in vitro muscle
contractions, these results confirm that thteot$ of a
reduction/pregention of NO production (NOS inhibition or
nNOS knock-out mice) on glucose uptaite independent
of the potential éécts of NO on blood fle. Indeed, we
also found that NOS inhibition, which pemted the
contraction-induced increase in skeletal muscle NOS
activity, attenuated increases in glucose uptakring in
situ contractions in rats without affecting muscle capillary
blood flov, suggesting that NOS inhibition wasfedting
the skeletal muscle fibrgser se® Taken together with our
human findings, these studies suggest that NO is essential
for normal increases in skeletal muscle glucose eptak
during &ercise.

It is worth noting that rat studies from other
laboratories hee yielded conflicting results (e.g. Higi et
al., 2001} Robertset al, 1997'9). For example, tw
studies found NOS inhibition prented increases in
contraction-stimulated glucose uptak® but two ather
studies reported no effect of NOS inhibition on contraction-
stimulated glucose uptak’1°In general, the rodent studies
in this area of inquiry hee keen difficult to interpret, since
in these studies, unkkin aur human studies and our recent
rodent studies where glucose upak neasuredduring
exacise, glucose transport/uptakmeasurements were
usually made 20 or more minutedter contractions or
treadmill eercise. The potential reasons for these
contradictory findings in the studies using rodentseha
been discussed elsewhéfe.

Downstream signalling of NOS/NO in terms of glucose
uptake

It is important to examine the potential mechanisms
of hov NO increases glucose uptkluring contractions.
To date, the only studies xamining phenomena
downstream of NOS in relation to glucose upgtakere
conducted in non-contracting musctég? Clearly, one can
not assume that the regulation of muscle glucose egtak
rest is similar to the regulation duringeecise.

In non-contracting isolated skeletal muscles, NO

whether this was prented by NOS inhibition or that NOS appears toxert its effects by modulating cGMPJes 2122
activity was increased by L-arginine infusion duringincreases in NO stimulate soluble gyate gclase,

exgacise.

Futurestudies are warranted to address thiproducing cGMP (Figure 1)In isolated skeletal muscles

cognitve gap. We have followed up these human studiesfrom mice and frogs, contraction increases muscle cGMP
with rodent experiments which alloa nore thorough
examination of mechanismsn recent preliminary findings glucose uptad in isolated rat muscled:?? In addition, NO
we hae indications that nNOS knock-out mice displaydonors such as sodium nitroprusside (SNP) raistetsh
essentially no increase in glucose uptakiring in vitro
contractions (Linderet al. unpublished obseations) and
that NOS inhibition (by L-NMMA) attenuates aletal
muscle glucose uptak during in vitro contractions in

70

K.C. Linden; J.G. Ryallf C. van der Po€l,J.D. Schertzer G.S.

Lynch” & G.K. McConell: 2008. *Exercise Physiology and
Metabolism Laboratory and 'Basic and Clinical Myology
Laboratory Department of Pysiology, University of Melbourne,
Victoria 3010, Australia.

levels and the cGMP analogue 8-bromo-cGMP increases

muscle cGMP conteht?222and increase glucose upéak
presumably as a result of the aation of sGC?:22 Indeed,
addition of LY-83583, an inhibitor of sGC, decreases
skeletal muscle cGMP content and reduces basal
2-deoxyglucose transport in isolated rat muscle to a similar
extent as with L-NMMA?2 LY-83583 also completely

t T. Merry, G. Lynch, & G. McConell. 2008. Departmentof
Physiology University of Melbourne, Parkville, itoria 3010,
Australia.
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abolishes SNP augmented glucose transBortowever, purified AMPK has little dgkct on nNOS activity (Lee-
LY-83583, in addition to inhibiting sGC, also inhibitsYoung et al. unpublished obseations). It is unlikely,
nNOSZ® It is therefore important that the more specifitherefore, that AMPK xerts effects on glucose upekia
sGC inhibitor 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-onephosphorylation of nNOS, which, as mentioned eariger
(ODQ) be usett and also that contraction studies behe main isoform in muscle. Indeed, preliminaxdence
conducted. Itis also important that studiesxamine indicates that AICAR increases glucose uptairmally in
whether cGMP-dependent protein kinase (PKG) activity skeletal muscle of nNOS knock-out miitevitro (Lindenet
increased with contractiordercise (Figure 1). al. unpublished observations

It has become clear that in nyacell types NO also ) _ )
signals through cGMP-independent mechanisms, especidfyjtochondria, exercise and diabetes
Snitrosylation?>26 the cwaent addition of NO to a
cysteine thiol/sulfhydryl group, resulting i&nitrosothiols
(Figure 1). Snitrosylation is “increasingly becoming
recognized as a ubiquitousgraatory reaction comparable mitochondrial volume/function and eked intramuscular

to phosphorylation®® Indeed, it has been demonstrated irI\pids are associated with insulin resistance irletal
vascular smooth muscle cells, human endothelial CE||ﬁ1uscle38_41 However it is dill unclear if reduced

!ntaTt k&e_a rtsG?vrlg n deletal dmlisgle tflllf':lSnltfrfosi/lat?q%g mitochondrial volume/function is a cause or a consequence
involved in ¢ -independent signalling etiects o of insulin resistanc&*3 Some studie®’*%**but not all*°

and that proteins  associated W't.h qucosz_a trans.ch e reported reduced mitochondrial synthesis (biogenesis)
regulation (e.g. Akt/PKB) are susceptible to S-nltrosylatlori'h insulin resistant skeletal muscle

. 0 e i . ’
in skeletal musclé® It is important that studiesxamine Endurance xercise training increases alletal muscle

Whether. NO. increases _glucos_e_ uptak d‘T"‘g mitochondrial wlume46 and mitochondrial
contraction/gercise, at least in parjia increases inS biogenesi€54749 It is possible that increases inedital

nitrosylation. muscle mitochondrial biogenesis contribute to the increase

N .Flr:ally,.NO r:a;; e<ert: Its efectgtqttglng EerC|s$ 'Itn in skeletal muscle insulin sensity observed afterxercise
partvia tyrosine nitration by peroxynitrit€. Peroxynitrite rainings®  Although this has not been xtensiely

is formed by a non-enzymatic reaction between NO and t %mined, evidence suggests that people with type 2

reactve oxygen species (G.S)’ superox_ide (Figure 1)t diabetes, who h& reduced skletal muscle mitochondrial
has been reported that during contraction of mescthere biogenesis, respond toxecise training with a normal

are '”Cr.e"’.‘sef n both superoxide an_d NG, "?‘”d therefQfe, ease in mitochondrial enzymes and insulin sensifi¥ity.
peroxynitrité! (Figure 1). Note that this stutlyinvolved Mary research groups are attempting to determine

contractpn n _heall;h muscle cells so is mdmare .d howv exercise increases mitochondrial biogenesis and it
physiological signalling and not a pathological dlseasgppears that the same signals that may belied in

process, as may be the case with peroxynitrife. regulating glucose uptak curing eercise €.g. AMPK
physiological levels, peroxynitrite uprgulates an array of CaMK and NO) may also be agiiing gene expression, of
signalling cascades, through the inhibition of phosphataﬁg& markers of mitochondrial biogenesis such as
and direct actiation of several different protein kinases peroxisome  proliferateactivated  receptor  (PRR)-y

(i'gl' tAIMPK landl MAP kltnagés;s) volved in rgulating coactvator-1a (PCG-In), nuclear respiratory factors 1 and
skeletal muscle glucose up : 2 (NRF-1, NRF-2) and mitochondrial transcription factor A

AMPK does not increase glucose uptake via activation (MtTFA) after exercise®52 The next section will discuss
of nNOS the potential role of NO in basal and contraction-stimulated

mitochondrial biogenesis.

The slkeletal muscle of people with type 2 diabetes
have reduced mitochondrial function, largely due to
reduced mitochondrial olume3” This reduced

5-aminoimidazole-4-carboxyamide-ribonucleoside o o )
(AICAR), a cell-permeable astitor of AMPK, increases D08 NO/NOSplay arolein mitochondrial biogenesis
rat skeletal muscle glucose upgai vitro andin vivo, Like ~ after exercise?
exacise, AICAR increases the translocation of GLUT-4 to
the sarcolemma and appears to aga an insulin-
independent mechanism. AMPK phosphorylates and
actvates eNO& and in the heart this plays a role in
glucose uptad3* A study in rats found that AICAR
increased NOS activity and glucose uptak muscle fibre
bundles, and that these effects could bevgred by NOS
inhibition. However, we have found that NOS inhibition
has no effect on AICAR-astted glucose transport in 3  R.S. Lee-¥ung' Z-P Chen! B.J. Michell; G.D. Wadley, B.E.

It has been shen that NO donors and analogues of
the downstream messenger of NO, cGMRcrease
mitochondrial biogenesis in muscle céfisAlthough nNOS

is the major NOS isoform in skeletal muscle, both eNOS
and nNOS isoforms are expressed within skeletal muscle
fibers, with eNOS more abundant in oxiglatiand nNOS

isolated rat skeletal muscle.In addition, we found that Kemp'™* & G.K. McConell: 2008. *Department of Pysiology,

although AMPK phosphorylates nNOS during contraction  University of Melbourne, Parkville, Victoria 3010, AustralitSt.

in situ in rats® and during gercise in human sKetal Vincents Institute, Fitzry, Victoria 3065, Australia *CSIRO

musc|e3,5 in vitro phosphorylation of recombinant nNOS by Molecular & Health Technologies, Parkville, ictoria 3052,
Australia.
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more albindant in glycolytic skeletal muscles inProfessor Stephen Rattigarroff Merry and Kelly Linden.
rodentst?54%6 NO production, total NOS activity and We would also like to epress our appreciation to the
cGMP, increase during contraction in rodentelsfal participants imolved in our research and the funding from:
muscl@1®12 and may therefore be vioved in the the National Health and Medical Research Council
upregulation of mitochondrial biogenesis aftegreise. (NHMRC) of Australia and Diabetes Australia.

We found that ingestion of the non-specific NOS
inhibitor NC-nitro-L-amginine methyl ester (L-NME) for 2 References

days reduced basal skeletal muscle mitochondri’ill ZierathJR, He L, Guma A, Odegoard Wahlstrom E, Klip

biogenesis bt had no effect on the increase in
mitochondrial biogenesis after an acute bout)afase>’
Similarly, the increase in mitochondrial biogenesis reesk
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in  nNOS knock-out and eNOS knock-out mtée.
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Conclusions

There is good, albeit not fully consistentjidence

in mitochondrial
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