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Implications of cross-talk between TNF and IGF-1 signalling in skeletal muscle
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Summary regeneration fails wer time and the dystrophic muscle is

_ ) _ progressiely replaced by fatty and fibrous conngeti
1. Inflammation, particularly the pro-inflammatoryisge.

cytokine tumour necrosisa€tor (TNF), increases necrosis Although the defecte @ne, dystrophin, s

of skeletal muscle. Depletion of inflammatory cells such 3gentified in 1987, there is still nofettive reatment for
neutrophils, cromolyn blockade of mast celgdeulation pyvp boys. While cell or gene thenapto replace the
or pharmacological blockade of TNF reduces necrosis gbfectie dystrophin is the ideal scenario, the clinical
dy_strophlc r_nyoﬂbres in the mdx mouse model of the |eth§bplication of such therapies is yet to become a rédlity
childhood disease Duchenne Muscular Dystyof@MD).  Meanwhile, map pre-clinical studies continue on the mdx
2. Insulin-like gowth factorl (IGF-1) is a @ry mouse model of DMD.
important gtokine for maintenance of skeletal muscle mass  1pe existing treatment for DMD is administration of
and transgenic ver-expression of IGF-1 within muscle corticosteroids; these are broad-based anti-inflammatory
cells reduces necrosis of dystroph_|c myofibres in mdx MiCgrugs that decrease inflammatory cell populations in
Thus IGF-1 usually has the opposite effect to TNF. dystrophic muscfeand increase myofibre mass, although
/3. Activation of TNF signallingvia the C-Jun N- {he precise mechanism of action in DMD is not yetvkmo
terminal kinase (JNK) can inhibit IGF-1 signalling the  anq is under intensé investigation’# One disadantage of
phosphorylation ~and  conformational change in IRSgeoids s that tiyeare associated with sere adverse side
downstream of the IGF-1 recept@uch silencing of IGF-1 ofects such as weight gain and osteopofosisd the
signalling in situations where inflammatory cytokines arfasponse is variable between individual bys.
elevated has manimplications for skeletal muscie vivo. While waiting for gene correction therapies to
4. The basis for these interactions between TNF anghpefylly become a clinical realjtgttention has turned to
IGF-1 is discussed with specific reference to clinicayy,q and nutritional inteentions that target inflammation,
consequences for myofibre necrosis in DMD, and_also fﬂbrosis, necrosis, muscle mass and reaatkygen species,
the wasting (atrophy) of sletal muscles that occurs iBry  gesigned to reduce the vesty of the dystropathology
o!d people and in cackie associated with inflammatory (revieved in Tidball & Wehling-Hendrickd! Radley et
disorders. al.'?. The best combinations of such drifgglone or with
dietary interentions* for long-term use in DMD remains

Duchenne muscular dystroply and therapies .
ystroply P to be determineéf

Duchenne muscular dystropfDMD) is an inherited
X-linked lethal childhood muscle disease, due to a defect'ﬁ?
the gene for dystrophin, which affects young$ocauses There is increasing evidence that inflammation
extreme wasting and loss of function ofetal muscles .gntributes to the necrosis of dystrophic myofiblet
and leads to death usually by 20 years of djestrophinis \yhen myofibore breakden and necrosis  occurs,

located beneath the sarcolemma and is part of ge lafflammation and associated cytokines are essential for
dystrophin dystroglycan comptehat forms a critical link  remayal of necrotic tissue and for formation ofwekeletal
for force transmission between the contractile machinery gf,scle. Inflammatory cells and a range oftokines

the muscle fibre and the extracellular matrix. Wherg,ence myoblast aetition, migration, proliferation
dystrophin is defeote a absent, the myofibre is fragile and gifterentiation and fusion. Strong vidence that
the sarcolemma is readily damaged in responsgefeise, jnflammatory cells can contribute to necrosis of hgalth
leading to myofibre necrostdvnhile it is widely considered muscle cells comes from studiewestigating the role of
that mechanical tears in the sarcolemma are the cause Ofﬁ@ﬁtrophils macrophages and oxidatiamagen vitrol7-20
initial damage, other data indicate that changes in iQhdin viva223 |t has similarly been proposed that an
channels may be responsible for the initial influx of calciungy.esgie inflammatory response can directly damage
that causes the damagelearly an accurate understandingnyofinres in myopathic conditions such as dystrophies or
of the basic mechanism willfatt the targeting of potential myositi€524 and recent data increasingly implicate

therapeutic interventions. While myofibre necrosis normallyfjammation and specifically tumour necrosis factor (TNF)
results in ne muscle formation, in DMD (and to a lesserj, myofibre necrosis.

extent in the mdx mouse model of DMD) it appears that TNF is a major pro-inflammatory cytokine that is

le of TNF in muscular dystrophy
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expressed by a wide range of inflammatory cells and ldetect eleation of TNF mRM\ expression in siletal
myoblasts, myotubes and damaged skeletal mé%&fe. muscles of adult nonxercised mdx mice (Shavlakadze —
TNF is also produced by adipose tisStf€ that is often unpublished data) and it seems that TNl (protein and
pronounced within the wasted skeletal muscles in DMD. ImRNA) have rot been reported for dystrophic dogs.
response towen minor myofibre injury TNF is rapidly
released from resident mast cells and also by neutrop[—
that accumulate quickly at sites of tissue danfafeand A _ : .
TNF is a potent chemokine that attracts furthi ; il
inflammatory cells to the injured site. The chemotactic rd ' s . e
of TNF was demonstrated in normal mouse muscle, whi A 5
administration of TNF resulted in the accumulation (.
neutrophils and macrophages in the absence yfissue | * <A ' e
damage® ¥ : ‘)
In support of the proposal that TNF and neutrophi/’ \ e ARV
exacerbate initial sarcolemmal damage and vghke 1 ' {
necrosis of dystrophic myofibresn vivo blockade of i
TNF31-33 cromolyn preention of degranulation of mast puds . !
cells (that normally release highvéés of TNF)2® or | : Wiz dopeas
depletion of host neutropht protects dystrophic mdx ' '
mouse muscle from necrosi$wo drugs that were used to
block TNF activity in the mdx mouse model of DMDJ:
Remicad@ (antibody to TNF dso known as Infliximab) |
and Enbré? (soluble receptor to TNFaso known as
Etanercept) are in wide clinical use already to tre
inflammatory disorders such as arthritis and Crehr,
disease. The high specificity of these anti-cytokine dru
combined with their clinical success in other diseases ¢
relatvely few side effects suggests that themay be
attractve dternatives to the existing use of corticosteroids
to treat DMD. In the mdx mouse, long-term studiesvda
further demonstrated that the mouse-specific cVIq antibc
to TNF has equal BEagy to Remicad® and Enbré?.34 It is
noted that this cV1q blockade of TNF has no effect on the
low levds of chronic myofibore damage in umeecised Figure 1. Immunohistogemical staining of TNF in ans-
dystrophic muscle, in striking contrast to the neark Verse sectioned dystphic (mdx) and non-dysiphic
protectve dfect on aercise-induced acute myofibre (C57Bl/10) mouse muscle (TNF stains brown). Non-dys-
necrosis, raising the possibility of different roles for TNArophic muscle (A) shows no specific staining for  Tdukle
(and other molecules) in these owstuations of bar represents 100m. Dystrophic muscle (B) shows TNF
r'nyopatholOgyf:‘1 The impact Of mrcise and a|so other Staining on the plasma menalme of muscle fibres and also
factors such as age and gender that affect wiseof the In areas of focal neosis (), with faint staining in some
pathology should be taken into account when interpretigpPaently intact myofibres (apws), scale barepresents
the expression profile of drent molecules and also the1lO0um.
impact of drug interventions and other therapies in mdx

mice. o . ) Elevated TNF may exacerbate muscle damage
Tha_t TNF protein is _euated chally in dystrophlc through seeral pathvays3° One of the contributors to TNF
muscles is supported by immunohistological studies th@lquced muscle necrosis could be the inflammatory

shav increased staining for TNF associated with necro“ﬁanscription fctor nuclear dctorkappaB (NFKB), since
areas of dystrophic muscles of the mdx mouse (Figufe INFkB is ativated in  limb muscle® and the

and biopsies from DMD patierffsand also with Wstern diaphragri®! of mdx mice and also in muscle samples
blotting analysis using anti-TNF antibodies in mdx musclgom pMD patient$2 The blockade of NRB by
extracts3® It is noted that the issue of representatissue pyrrolidine  dithiocarbamate reduces esital muscle
from the small biopsy sample that can beetakom DMD  ygyeneration in mdx miééand it has recently been stio
muscles makes _SUCh measurements very d'ﬁ'C“”. fHat heterozygous deletion of the p65 subunit ofdBFis
humans. Fe studies hae quantitated TNF in dystrophic gficient to decrease muscle necrosis in mdx ffice.
muscles or blood. While one study reported significantly Another possible mechanism for the damagirigogs
higher plasma leels of TNF in dystrophic (DMD and of TNF could be by actition of Jun N-terminal kinase

Becler MD) patients than in age-matched controfyni). This is of special interest since mated JNK can
patients3” another reported Vo levds of TNF levels in inhibit expression of IGF-1 mRN and also IGF-1

blood from DMD patient$® It has preed difficult to
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Protein synthesis m Protein Degradation -
‘ Hypertophy ‘ - Atrophy m

Figure 2. The damaging effects of TNF in skeletal muscle cedigantially mediated by interference with IGF-&aeptor
signalling JNK1 has been identified as one of the signalling molecules that medidtéstetierenceJNK1 can associate
with the IGF-1 docking mtein IRS-1 and inhibit its activityhich would lead towards dowregulation of biological po-
cesses mediated by IGF-1, isBmulation of protein synthesis, inhibition of proteirgtidation and cell survival. Indepen-
dently from inteaction with IGF-1 signalling TNF may up-egulate protein dgradation, leading to muscle atrophy and
promotes myofilernecrosis. NFKB is ane of the central playsrin both these processes

signalling and such cross-talk between TNF and IGF-1 hasmplex with effects on not only atroptthypertrophyvia
mary implications for muscular dystrophand other promotion of protein synthesis and inhibition of protein
conditions where inflammatoryytokines are eleted. A degradatiorf® but also on apoptosis, myoblast proliferation
striking increase in phosphorylation of JNK1 has beeand muscle differentiation.

reported in the diaphragm muscles of 7 wééksd 12 To further complicate the situation there are at least 6
month old mdx micé? whereas there was little increase insoforms of IGF-1 and the specific biological function of
the limb muscles of 12 month old méikxAnother study different isoforms of IGF-1 are not defin&®2 The recent
reported increased phosphorylation of INK2wéeer not development of transgenic mice thatvep-express these
JNK1 in the limb muscle of 16 weeks old noreeised different isoforms (N Winn, EMBL, Itajyunpublished data)
and eercised mdx micé® In marked contrast to the will hopefully help clarify their relatie importance in
adwerse efects of TNF on dystrophic muscle, increasedkeletal muscle.lt is noted that, while the Class 1 IGF-1Ea
levels of insulin-like gowth factorl (IGF-1) protect isoform clearly reduced the dystropathology of mdx
dystrophic muscle from necro$isand the roles of IGF-1 mice% 5*transgenic mdx mice thaver-express the fully

are discussed belo processed 70aa long human IGF-1 within myofibres
) _ (Rska-actin/hiGF-1 transgene) andveadevated IGF-1 in

Complex roles of IGF-1 and importance in skeletal muscles and blood, showed no imgment in muscle

muscle pathology?! Whether this lack of effect reflects thefeitnt

form of IGF-1 wer-expressed within the muscle or is due to

IGF-1 plays a central role in myofibreygertrophy . :
. : L F-1 iels seen only in the blood as well as
and atropl#8 and this balance is of critical importancecréased 1G R
ol P keletal muscles of these mdx/hIGF-1 transgenic mice is

r
;?;;?;gge(gzﬂggig,ageerllnegvg?gﬁ?%ei;ﬁ)é |2V|(r;2%m;rl1;;to )Enclearf’l' but .these qontrasting fjndings emphasise the
in the metabolic syndronf€.We havecarried out intensi complexity of interpreting transgenic d&ta.
studies using transgenic mice thaemexpress IGF-1 only  crgss-talk between TNF and IGF-1 signalling pathways
within skeletal musclé®495*An important finding was the ;5 Nk
demonstration that the reduced pathology in mdx mice that
over-express the Class 1 IGF-1Ea isoform ilikdue to One of the main mechanism by which TNF causes
reduced myofibre necroéfsand this protectie dfect may myofibre atropl and myofibre necrosis maybe signalling
relate to increased protein synthesis and decreased protegdiated by NRB365° (Figure 2). However, the
degradation. The signalling pathways of IGF-1 are highlgeleterious décts of TNF on skeletal muscle may also be
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due to interference with IGF-1 signalling. of the calcineurin sensi® NFAT transcription &ctor Data
TNF may inhibit IGF-1 dependenvents by devn- demonstrating the role of M signalling in myofibre
regulation of IGF-1 synthesi®and inhibition of signalling hypertoply are contraversial (reviewed in Shalakadze &,
pathways downstream of the IGF-1 recepto?® Activation  Ground$®), havever in mdx muscle upregulation of the
of JNK appears to play a role in both of these processes aadcineurin/NRAT pathway is protectie aanst muscle
this molecule is the focus of the faNing discussion. degeneratioi® Furthermore, while deflazacort (a steroid
Evidence for an inhibitory action of TNF on IGF-lused to treat DMD hes) did not alter INK1 activity itself,
synthesis is based orin vivo and tissue culture it increased actity of the calcineurin phosphatase and up-
experiments’® Mice injected with a non-lethal dose ofregulated NRT-dependent genexpression which in turn
lipopolysaccharide (known to stimulate inflammation)vgého negates JNK1 inhibitiorf* Taken together these results
increased TNF protein in blood and increased expressionsafggest that furthervduation of JNK inhibitors including
TNF mRMA in skeletal muscle, with decreased blooddls  JNK inhibitory peptides and JNK ATP competdi
of IGF-1 and decreased IGF-1 mRMxpression in skletal  inhibitors$>% as nev treatments for muscular dystrgph
muscle>® More direct proof that TNF regulates IGF-1(with potential clinical application to DMD) should be
expression is provided by a tissue cultuxperiment where considered.
direct addition of TNF to C2C12 myoblasts and Cross-talk between IGF-1 and TNF is further
differentiated myotubes decreased IGF-1 mMER JNK complicated by a report that IGF-1 can inhibit TNF
activation has been suggested to mediate TNF inducaignalling irvolved in protein catabolism, as sho in
inhibition of IGF-1 synthesis in C2C12 myoblasts, since inuman colonic adenocarcinoma cells where pre-treatment
these cultured skeletal muscle cells the JNK inhipitowith IGF-1 reduced TNF mediated nuclear localization of
SP600125, blocked the TNF induced decrease in IGFNIF-kB.%7 It was suggested that muscle-specifivalen of
mRNA expressiorr? IGF-1 would also intercept TNF signalling and reduce the
Interference of TNF with IGF-1 signalling may occurloss of muscle mass (cact® in inflammatory conditions;
via inhibition of the IGF-1 receptor docking proteinsmoreover it has recently been demonstrated that inhibition
Insulin Receptor Substrate IRS-1 and IRS-2 leading to of NF«B signalling protects against denervation induced
down-rggulation  of signalling molecules further muscle atropp® Experiments are required to test tine
downstream of the IGF-1 receptothat are imolved in  vivo possibility that IGF-1 may play an inhibitory role in
regulation of the protein balance and cell sualviFigure inflammatory-mediated wasting of skeletal muscle.
2). Tissue culture studies suggest that in C2C12 myoblasts S )
treated with TNF JNK associates with IRS-1 and Beyond dystrophy:_t_:llnlcal implications for ageing and
phosphorylates serine 307 (Ser387Phosphorylation of ©ther muscle conditions
the Ser307 residue leads to dissociation of IRS-1 from the
IGF-1 receptor and inhibition of the tyrosine
phosphorylation of IRS-1, which is required for th
downstream signal transmission from the \atéd IGF-1
receptof! Use of the JNK inhibitors I-JINK and SP60012
has confirmed the fefcts of INK as a mgtive requlator of

Maintenance of skeletal muscle mass igsegoed by
a ompleity of signalling interactiorf§ and age-related
€muscle weakness and loss of muscle function (sarcopenia)
resents manserious problem&?7° Human studies shwo
hat in the elderly systemic low-grade inflammation
i with incr I f TNF and IL- n
IGF-1 signalling in C2C12 myoblast8] but these dects ?éi?r(i:tﬁzgd tot Iosg egfe?mtj)sc;?gdk:ngss an?j dstreggct%.

are yet to be testedh vivo. Howeva, in aultured 3T3'L1. Cytokines are responsible for muscle proteigrddation in
adipogttes, ERK1/2 rather than JNK seems to med'a'i%ore sgere cases of inflammation, such as cancer

IRS-1 phosphorylation at the Ser307 residue in response %9 : ; -

62 o A, cachaia, sepsis and AID® Muscle wasting produced by
TN'.:’. since |nh|p|t|0n of ERK1/2 but not JNK;aa TNF is associated with induction of oxidagi gress3®
sufiicient to abolish the Ser307 phosphorylation. In

g . which is considered to be a major conitilr to age related
addition, the phqsphorylatlon of IRS-1 on Ser30_7e$ak sarcopenia. It has been suggested that thetefof TNF on
place, not only in response to TNBut also follaving

muscle atropph may also be mediated in pania

treatment with insulin and IGF-1 which represents g, terence with IGF-1 signallifg and inhibition of the
negaive feedback loop, responsible for insulin and IGF- nabolic signalling cascade wiostream of the IGF-1

reS|stancté, éh'sd. |?h|bt|t]:0n Oftrlle.l b3|/|.mSU|6'2 andﬁ/;?Fdl receptoy that would lead to decreased protein synthesis and
gpr}e&s 0 be distinct from the signalling patiactvate up-reggulation of atropi related genes. Thus, attempts to
y ‘ minimize muscle wasting inavious clinical conditions

t dTh?. aclwatlog hOf ba JNKl—m?d(ljatted (ms't%gal have focused on both anti-inflammatory drugs to block TNF
ransduction cascade has been suggested 1o caa action and declopment of stratgies to delrer IGF-1 to

progression of the dystrophic mdx phenotype, independ letal myofibre. Clarification of interactions between

from IRS-1 inhibition. Adenairal expression of the JNK1 these tw opposing pathways presents the possibility of

inhibitor JIP1 in skeletal myofibres of md?< mice t.hat als?l therapeutic tayets and should provide valuable insight
lack MyoD protected them from degeneration and mcreas?rag molecular eents determining the serity of muscular

their cross sectional aréaThis study suggested that thed stroply and other muscle disorders
mechanism of JNK1 action in dystrophic muscle is at IeasY '
partly due to serine phosphorylation and nucleafusion
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