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The impact of age on cardiac excitation-contraction coupling
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Summary excitation-contraction (EC) coupling Y& keen ivestigated
) _ _at the led of the individual ventricular mygee. This

1. Cardiosascular diseases most commonly occur ifyief resiew describes our current understanding of the
the elderly and are a frequent cause of disability or deamwpact of age on cardiac contraction andaeates
However, the efect of age itself on cardiac function is ”Otunderlying alterations to the EC coupling paiyvthat may

well understood. _ ~ provoke mntractile decline in the ageing heart.
2. Studies in both human and animal hearts indicate

that contractile function is urfatted by age while at rest. Contractile function in the ageing heart
However, the ability to increase cardiac contractile force

during strenuous activities such asereise declines with In humans, ageing causes significant changes in the
age. heart, @en in the absence ofvert cardiovascular disease.

3. Similar findings hee keen observed in inddual Left ventricular wall thickness increases with age in the

ventricular myocytes isolated from aged hearts. Whefman heart.This occurs een though the total number of
myogytes are stimulated witg-adrenegic agonists or rapid viable ventricular myoges actually declines with age

pacing frequencies, aged cells wha rmuch smaller because the remaining cellsypertroply.? Increased
increase in peak contractions and?C#ransients than accumulation of collagen and fibrous tissue also cart&ré

young adult cells. In addition, contractions and &a © the thickening of t.heantricle.l Thesg structura! changes
transients are prolonged in aged cells compared to youngé® thought to contrilie to the reduction in cardiac output
cells under these conditions. and decrease in fractional shortening with &gélthough

4. These observations suggest that the age-relategntractility at rest does not appear to Heated by agé®
decline in cardiac contractile function originates at thée ability to increase ejection fraction in response to

cellular level and may reflect modifications in processe&Ctvities such as ercise declines in older aduf'ts. .
involved in excitation-contraction (EC) coupling. Myocardial contraction is also prolonged and relaxation is

5. Biochemical studies wa sown that there are incomplete in aged indiduals compared to younger

‘g . . . . 1,7
age-related modifications in thepeession, regulation and adults:-" . _ _
function of a number of proteins essential to EC-coupling in 1€ impact of age on cardiac contractile function also
the heart. has been westigated in various animal models of ageing.

6. Functional studies indicate that these changes Most studies hze sed mice and rats that are
EC-coupling proteins disrupt €a homeostasis and approximately 24 months of age to model_aged humans,
contritute to decrease in peak contraction and praltiag and compared responses to data obtained in younger adult

of contraction duration observed in mytes from aged animals, typically aged 3 to 8 months. Based on sarvi
hearts. data, the 50% mortality rate for humans occurs near the age

7. This resiew describes modifications in cardiac©f 85 years, while the 50% mortality rate in mice and rats
contractile function that occur in the ageing heart arECUrs at approximately 24 months of dgdherefore,
evduates underlying alterations in the EC-coupIing’-""momh old rodents ka been used as models of 85-year

pathvay that may be responsible for this decline i@ld humans.

contractile function in ageing. .Studies in aged rodent mod.eIS\,./QaehoNn tha}t left
ventricular mass increas@s and individual ‘entricular
Introduction myogytes are hypertrophied acrossirious specieki 16

_ ) ) ) Also, the total number ofentricular myocytes decreases

Most experimental studies of cardgscular disease \yith age in the rat heart, iy as a result of an increase in
use young adult orven juvenile animals, which areewy  pacrotic and apoptotic cell dedth. Contractile function
far remoed from the human ages where cardiagso appears to change with age in animal modalitact
pathoplysiology becomes clinically importantowever,  hearts and isolated cardiac tissues, peak contractions are
the ageing processfaéts both the structure and function of ,n5fected by age at Vo stimulation rates, @t fractional
the heart.This leads to an age-associated decline in cardigfortening declines with age and the rates of shortening and
function, which may predlspos_e older adu_ltwamls the re-lengthening are prolonged at more rapid pacing
development of arious cardigascular diseases.To (151827 A similar pattern is seen iim vivo studies when

understand the impact of age on cardiac contractigagrenegic receptors are stimulated to mimic théeefs
function, effects of age on mechanismeolaed in cardiac ¢ gvercise1028 Aged hearts sivoa much smaller increase
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in contractile force in response f®adrenegic receptor believed to be Inked to the decline in contractile function in
stimulation than their younger counterpartsSince the ageing heart.

contractions are initiated by an increase in intracellular free
C&* at the leel of the indvidual myogte?® these

. . . A B
obsenations suggest that contractile decline may res o Young adult
from impaired C& handling due to age-relatec 2. \
modifications in components of EC-coupling. £,

Cardiac EC-coupling Ej
2
5
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Cardiac contraction is aetted by a transient rise in

02s
sonl

intracellular free C&. The C&" transient arises when €a
influx, primarily as L-type C# current (|, ), triggers C&" w0
release from the sarcoplasmic reticulum @Rhrough = \‘N‘
2Hz 4Hz THz 9Hz

[Ca*'}; (nM)

Ca&* release channels, kwa as cardiac ryanodine Young adult
receptors (RyR}! This process is called €ainduced C&" o
release (CICRJ>34 C&* release from the SR is
proportional to the magnitude of |, and the dgree to Figure 1. Contractions and C#& transients are prolonged
which this signal is amplified is kmm as the “gain” of at rapid stimulation rates in ventricular myocytes from
CICR2® Experimentally gain is defined as the amount ofaged mice compared to cells from younger animal:
SR C&* release divided by the amount of trigger?Ca Contractions and C# transients we¥ recoded fom
influx (total C&* releaseyl).2° Gain can be modulated by myocytes isolated from young adult (5 mo) agéda(34
temperature and by SR €doad®>3¢and is thought to play mo) mice Cells wee loaded with fura-2 and field-stimu-
a ole in the rgulation of cardiac contractiotf:*¢ During lated at a ange of dfferent frequencies at 37°Represen-
relaxation, most of the released?Cés transported back tative recodings of cell shortening (top) and €atran-
into the SR by the SR €aATPase (SERCASC although sients bottom) ém a young adult myocyte paced at 2, 4, 7,
some C& is remaed from the cell by the N&Ca* and 9 Hz. B: Examples of contractions (top) and Ca
exchanger (NCX) with a minor contribution from thetransients (bottom)ecoded fom young adult and ged
sarcolemmal C4d ATPase3%41 myocytes paced at 9 Hz. Responseswamalized to the
SR C&* is released in discrete €arelease units peak value in edccase to show langes in time colse.
called C&" sparks’?** These C#& sparks originate near Each recoding represents the avage d ten original
specialized junctions between the sarcolemma (t-tubule re@cordings. Reprintedrom Limet all#with permission.
surface membrane) and the $®R. At these junctions, L-
type C&" channels and RyRs are located in close o )
proximity4547 Ca* sparks are thought to represenfC-coupling inthe ageing heart
coordinated Czaf release through a cluster of RyRs whichsgnhiractile function in ventricular myocytes fromed
become actited by one or more L-type €a animals
channelg24548 Normally, spontaneous 4 release from
one release unit does not maté neighbouring release A decrease in the ability of inddual ventricular
units, as released Eaiffuses aay from adjacent unit¥ myogytes to contract is thought to contrtb importantly to
However, upon depolarisation, mgnrelease units are the age-associated decline in cardiac contractile function.
simultaneously actéted by |, and individual C& sparks When myogtes are paced at slostimulation rates (<1
fuse to form the CA transient®*® Spontaneous G& Hz), peak contractions appear similar in young adult and
sparks also can occur in quiescent cellsnén the absence aged myocytes from mice and r&td#5+55 However at
of L-channel opening®4+59Spark frequencincreases as higher stimulation frequencies (> 2 Hz), thaeat of cell
SR C&" load increases, which suggests that spontanecsisortening is lwer in aged mouse ventricular mytes
Ca’* sparks represent a leak pathway fof'Ghaat limits SR than in young adult cel®. In addition, re-lengthening is
C&* content®® Thus, changes in these unitary’Ceelease prolonged in cells from aged animafs.The decline in
events can impact upon SR €acontent and affect the cardiac contractile function also is reflected in?Ca
magnitude of the Catransient. transients recorded from aged rodent nyyes'31456
Since the cardiac contraction daty reflects the Figure 1 shws results from a study by Lirat all* that
magnitude and time course of the ?Caransienf?5® compares contractions and Zaransients recorded from
processes which affect the Caransient hae dearly been ventricular myocytes isolated from young adult and aged
of interest in studies of the impact of age on cardiamice. Inyoung adult myocytes, peak contractions anéf Ca
contractile function. Mary studies hae focussed on the transients increase and responses decay more rapidly at
effect of age on contractions and “Caomeostasis at the higher stimulation frequencits*® (Figure 1A). However,
level of the individual ventricular myate. Asdescribed in aged myocytes produce much smaller increases in peak
detail belov, ageing results in significant biochemical andC&* transients than younger cells when mytes are paced
physiological changes in the EC-coupling pathway that ae rapid rate$*¢ In addition, rates of decay are prolonged
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in B-adenegic receptor signalling may help explain the loss

of sensitvity to catecholamines that occurs with agéese
] Young Adult age-associated modifications in  contractions, 2*Ca
Bl A transients and3-adrenegic receptor signalling in arious

animal models of ageing are summarized in Table 1.

6 - Molecular components of EC-coupling in thgsiag heart

I To understand mechanisms that suppress contractile
function in the ageing heart, a number of studiegeha
% o investigated the impact of age on proteinsdived in EC-
coupling. Contractionsire slowed in the ageing heart, in
part due to changes in myofilament proteins including a
27 shift froma myosin heavy chain t myosin heavy chaif?
I This results in a decrease in myosifiPAse activity in the
ageing heart? Changes in SERCA2a, the primary SERCA
0 . isoform epressed in the heart, also may affect relaxation in
Control 0.1 uM 1 uM the ageing heart. An age-related decrease in the ability of
SERCAZ2a to sequester €an the SR may prolong the
Ca* transient and sl@ contraction in the ageing
heart?0-2263 Reduced expression of SERCA2a in aged
myog/tes may be responsible for the slowing of?Ca
reuptale and prolongation of contractidi¥,although this is
; controversial 526465 Age-related modifications in  the
tricular myocytes from young adult rats compared toregulation of SERCA2a by the endogenous inhibitor
myocytes from aged ratsIntracellular cAMP formation phospholamban (PLB) also mayfeaft contraction in the
was measured in isolated intact ventricular myocytes is%'geing heart. PLB is expressed avaled levels in aged
lated from young adult (3 mo) andgal (24 mo) BIS. jces4 \which would be expected to sioCa2* reuptale in
I_ntracel!ular cAMP produ_ctlon in response to admmastr_ the ageing heartFurthermore, phosphorylation of PLB by
tion of isopoterenol was increased over control Ievgls 'rbrotein kinase A (PKA) appears to decrease withSags
both young adult and ged nyocytes. Howeer this ,posonorylation of PLB by PKA normally increases the

increase was significantly greater in young adult myocytegy iy of SERCA2a and speeds relaxatfm, reduction in
when compared toged cells (** denotes significantly dif- onqphorylation of PLB by PKA euld slav contraction in

ferent from ge-mated contol group, p < 0.05; * denotes yhe ageing heartFurther the ability of C&*calmodulin

significantly diferent flom young adult group, p < 0.05). yenendent (CaM) kinase to increase SERCA2avitycti

Reprinted from Farrell & Howletf with permission. through phosphorylation is reduced in the ageing Keart.
Together these findings indicate that SERCA2a \atti

in aged cells when compared to younger cells under theb@y be decreased in the ageing heart due to a decline in

experimental conditiod4° (Figure 1B). These results pump density and an increase in inhibitorygulation.

suggest that the ability of individual ventricular myocytes tdhese changes would be expected tov s8R Ca?* uptake,

contract declines with ageThis functional decline at the reduce SR Cd content and prolong the &atransient, all

level of the myocyte would be expected to decrease tf which would contribute to a decline in contractile

overall contractile performance of the ageing heart. function in the ageing heart.

Ventricular myocytes from aged animals alsovgtao Other studies hee investigated NCX activity in the
decrease in their ability to augment contractions artt Caageing heart. Results of studies with membrane vesicles or
transients wherf-adrenegic receptors are stimulated bycardiac muscles ke been inconsistent, with reports that
catecholamine¥5557 In addition, the rates of decay of NCX activity is either decreas#e’ or unchange® in the
contractions and Gatransients are prolonged in aged cell@geing heart. The reasons for theseede results are
when compared to younger cells in the presence W&fclear but might be due to dirences in membrane
B-adenegic receptor stimulatio® This may be due to a preparations or experimental modelslowever, a lecent
decrease in the density @fadrenegic receptors with ag®, study of the function of NCX has shio that NCX actiity
though most studies ha reported no effect of age on actually increases with age in intaemricular myoygtes®®
B-adrenegic receptor densi§?%! Recently hwever, As NCX functions primarily to reme C#* from the cell,
Farell & Howlett®” reported that a decrease in agate an increase in NCX aefty might help remwe Ca* from
cyclase actiity with age leads to less cAMP production inthe ageing cardiac myocyte during relaxation. This could
ventricular myogtes from aged raf¥.Figure 2 shows that, Sene to @mpensate, at least in part, for the age-related
when ventricular myodes are stimulated with the non-decline in SERCA2a aeity. The increased expression of
selectve B-agonist isoproterenol, aged cells produc®lCX also may enhance €ainflux during the action
significantly less cAMP than younger céllsThis decrease potential, which may contriie to the prolonged

*%

cAMP (pmol/mg protein)
N

Isoproterenol

Figure 2. Intracellular cAMP formation in response to
increasing concentrations of the non-seleaiy-adrener-
gic agonist isoproterenol was significantly greater ien¢
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Table 1: Age-associated decline in contractile function ag@drenergic receptor signalling in ventricular myocytes

Parameter Functional Change Model/References
Contraction | cell shortening, relaxation slowed, w/ rapid stimulation mioces 24 & 34 moi*
Contraction | cell shortening, relaxation slowed B/AR stimulation rats, 1-#s24 mo?3
3 mo vs24 ma>>’
Ca&* Transient | peak amplitude, decay slowed, w/ rapid stimulation mices 2t & 34 moX*
mice, 2vs20-26 m§°
Ca&* Transient | peak amplitude, decay slowed, ®vAR stimulation mice, ¥s24 & 34 mo**
mice, 2vs 20-26 m@&®
B-AR signalling - receptor density rats, 3vs24 mo®°

rats, 3vs24 mo®°

rats, 3vs24 mad?
| receptor density rats, 2vs24 mo?®
I cAMP production 3 movs24 mo’

Abbr eviations: B-adrenergic recepto{AR)

Table 2: Molecular components of the EC-coupling pathway in the ageing heart

Component Modification Model/references
Myosin ATPase | AT Pase activity rats, 4s24 ma?
a to B myosin heavy chain rats,v624 md@?
SERCA2a | sequestration of C& rats, 6-8vs24-26 mo®rats, 1-2vs24 mo®3rats, 6-8vs24-26 ma?
| expression rats, 1-2s24 md3
« expression rats, 6-8526-28 mo®® mice, 5vs24 & 34 mo®rats, 4vs 24 md?
| phosphorylation rats, 6-826-28 mé°
PLB 0 protein expression mice \&24 & 34 m&*
| phosphorylation rats, 6-826-28 mé°
NCX O activity 14-15vs27-31 m§°®
« or | activity mice, 5vs24 & 34 mo®*rats, 6vs24 mo®rats, 4-6vs24-277
Calsequestrin o rats, 1-2vs24 mo% mice, 5vs24 & 34 mé*
RyR | Receptor density rats, 4 vs. 24 d¥diamsters, 4s10 ma°
« density rats, 6-8s26-28 m@°
| phosphorylation rats, 6-826-28 mé°

Abbreviations: Ryanodine receptor (RyR); cardiac SR 2CaATPase (SERCAZ2a); phospholamban (PLB);
Na‘/Ca*exchanger (NCX).

contraction observed in aged mytes! However, the different animal models of ageing are illustrated abl& 2.
relative contributions of NCX and SERCA2a to myocardial . i o
relaxation in the ageing heart remain uncertain. Functional studies of components of EC couplinggeda
Proteins inolved in SR C# release hae dso been Ventricular myocytes
investigated in the ageing heart. s of calsequestrin, the
major SR C#&" binding protein, are similar in young adult
and aged hearf8:%* In contrast, proteins wolved in SR
Ca* release hee been shown to change with agéhanges
in RyR2, the major RyRxpressed in heart, also mayeat
contractile function in the ageing heart. Some studige h
obsered an age-associated reduction in RyR2i¢ein the
ageing heart®"Calthough this has not been reported in al
models of agein§® In addition, phosphorylation of RyR2
by CaM kinase is reduced in the ageing h&arfThe
physiological consequences of phosphorylation of RyR
remain highly contreersial/! but the decrease in
phosphorylation of RyR2 with age may affect SR?"Ca
release in the ageing heart. The major age-associa
modifications in components of cardiac EC coupling

To determine whether age-related modifications in
proteins affect cardiac function, ysiological properties of
ventricular myogtes ha&e been compared in cells from
young adult and aged animals. Some studige k#plored
the impact of age on spontaneous‘Gaparks to establish
Awhether the decrease in RyR2 density and reduction in
RyR2 phosphorylation might affect unitary Taelease
vents. Studies have down that the frequenc of
spontaneous C& sparks increases with age in mouse
entricular myocytes, although the duration of indual

&* sparks decline® An increase in spark frequenc
along with a reduction in Caspark duration also has been
re@orted in aged rat mygtes, along with a decline in the

th and amplitude of Ca sparks’® These findings
'guggest that age-associated changes in RyR2 nfiegt af
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Table 3: Functional studies of EC coupling in aged ventricular myocytes

Parameter Functional Change Model/references
Ca&* Sparks 0 spontaneous spark frequency  mic&s24 mo/?rats, 6vs24 md?
L spark duration mice, ¥s24 mo;?rats, 6vs24 md?
L spark width rats, §s24 mad®
L spark amplitude rats, 824 ma*
Action Potential O duration rats, 6-8s24-26 mo# rats, 2-3vs24-25 mo*? rats, 6vs 27+ md®
RMP -~ RMP rats, 6-8/s24-26 mo?2rats, 2-3vs24-25 mot?rats, 6vs 27+ md®
lto | peak current density rats, 2v824-25 ma?
| rate of inactiation rats, Bvs27+ md>
NCX O forward mode current rats, 14-$¥527-31 mé&°
lcaL | rate of inactiation rats, 6vs 27+ mot°rats, 2-3vs24-25 mo*2 mice, 7vs24 ma®
L peak current density ratsy827+ mo*® mice, 7vs24 md>®
L C&* channel density hamstersy420 md*

Abbr eviations: L-Type C&" channel current gL); transient outard K* current (4); Na'/Ca*exchanger (NCX); resting
membrane potential (RMP).

Ca’* content and disrupt Gatransients in the ageing heart.
APD Other studies hee investigated electropysiological
h@ 5. Adrenergic Receplor properties of intact ventricular myytes isolated from
young adult and aged animalStudies hee $xown that the
S cardiac action potential, which initiates the?Caansient,
is prolonged in the ageing he&t>2? On the other hand,
resting membrane potentials irentricular myocytes and
tissues are not affected by dgé>?? Voltage clamp studies
have shown that the increased action potential duration in

@ Myosin ATPase

=

" O ca” the ageing heart results from age-dependent changes in
® “ transmembrane currents. Ageing is associated with a
o decrease in peak density of the repolarising transient
outward K" current (L) and a modest slowing of the rate
of inactation of I.,.*%15 Forward-mode NCX current also
o> © increases with agfg. The inactvation of I, also is slaved
Cal——> loa ——> in aged rat ventricular mygtes compared to younger
- 12,15 A i i i
cells:=* Collectively, the decrease in;J, increase in
inward NCX current and sheed inactvation of 1., can
LK—// account for the increase in action potential duration
et Sarcoplasmic Reticulam obsered in aged entricular myogtes?? This increase in

action potential duration euld be expected to prolong

- . :
Figure 3. Changes in major components of cardiac eXci_.depolarlsatlon and could sloCa?* release and contractions

tation-contraction coupling in the ageing heartin the In S_QEd r::ardlac m):jgtes.l Inter_estin?lzycmary .previous
ageng heart, action potential duration, contraction dur studies that reported prolongation of “Céransients and

tion, and C&* decay rate a al prolonged. Thesetanges contractions in ageing myocytes were conducted in field-
OCCI:II’ as a result ofeduced C& influx. reduced CH stimulated cells, where €arelease and contractions were

release and depressed cdiac contractile dfciency due to activated by action potentiafs:'“* Thus, itis possible that

a decline in &pression or activityof proteins involved in the _age-related Increase in action potential - duration
cardiac EC coupling An agerelated decrease in thefegt contritutes to the slowed contractions and prolongeé Ca

: 55 .
of p-adenegic stimulation, due to a reduction in cAMPopr relea§e reportgd n thes.e studiet! .Key findings of
duction in the geing heart also a& sen. Alteations in functional studies of cardiac EC coupling in rodent models
these mechanismseihought be esponsible for the car of ageing are summarized iradie 3 and illustrated in

. : . o Figure 3.
diac contractile decline observed igegng heart.
geng Studies hee sown that peak density of], declines

with age in rat ventricular mygtes, at least when
Ca* spark activity and G4 spark properties in the ageingexperiments are  conducted under ygiblogical
heart. Areduction in spark duration and/or spark widthgonditions'® Receptor binding studies alsovieashown
and amplitudes might be expected to disrupt SR* Cathat the density of difdropyridine receptors (L-type G&
release in the ageing hearn addition, increased €a channels) declines with age, although properties of these
spark activity in ageing cardiac myocytes may reduce SR
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channels are unchangé&d.As lc,. is the predominant decrease in peak.] may suppress CICR, whichowld
trigger for CICR, the obseed decrease in.J, may account depress cardiac contraction. Furtherestigation of these
for the reduction in SR Céarelease and decrease in the sizage-related changes should helgplain why cardiac
of contractions reported prieusly in aged myoges!31456  contractile function declines with ag&tudies in animals
However, these previous studies of contractile function imf both s&es may reveal important se differences in the
ventricular myocytes did not measurg, | together with effects of age in the heart, which might hekplain why
contractions and/or SR €arelease. Arecent study used men and wmen deelop different heart diseases later in
voltage clamp techniques to directlyéstigate effects of life.

age on contractions, &atransients and transmembrane

currents’® With voltage clamp techniques, the duration anficknowledgements

magnitude of depolarisation can be controlled and

Y . . . . o The authors express their appreciation to Peter
variations in action potential duration can be ehmmateq\.Iicholl for assistance with the figures. This worlasw

Under these conditions, the amplitudes of contractions aggpported in part by grants from the Canadian Institutes for

C&* transients are smaller inemtricular myocytes from Health Research and the Heart and Str&undation of
aged mice (24 mo) compared to responses in cells frorRlova Sotia. Elias Rres is supported by a graduate

young adult animals (5-6 mé). However, this study also scholarship from the N@ Sotia Health Research
shaved that the age-related decline in the size oundation

contractions and CGatransients occurred only in myges

from male animals and not in cells from female animls.References
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