A heterogeneous stoichiometry of $\alpha 9\alpha 10$ nicotinic acetylcholine receptors is detected by the selective conotoxin Vc1.1

N.L. Absalom,¹ G. Liang,¹ E. Pera,¹ C. Chu,¹ H.-L. Kim,¹ J.M. McIntosh^{2,3} and M. Chebib,^{1 1}Faculty of Pharmacy, University of Sydney, NSW 2006, Australia, ²Department of Psychiatry, University of Utah, Salt Lake City, Utah 84112, USA and ³Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.

Nicotinic acetylcholine (nACh) receptors are ligand-gated ion channels involved in fast synaptic transmission. nAChRs are pentameric complexes formed from combination of alpha and beta subunits, with the $\alpha 9 \alpha 10$ heteromeric complex found in inner hair cells, dorsal root ganglion neurons and lymphocytes. The $\alpha 9 \alpha 10$ receptor has previously been reported to form a stoichiometry of $(\alpha 9)_2(\alpha 10)_3$. The conotoxins Vc1.1 and RgIA are potent and selective inhibitors of acetylcholine-evoked currents in $\alpha 9 \alpha 10$ receptors. We have investigated the stoichiometry of $\alpha 9 \alpha 10$ receptors by conotoxin inhibition of ACh-evoked currents recombinantly expressed in Xenopus oocytes. We show that Vc1.1 inhibit ACh-evoked currents in a biphasic inhibition curve. We show that the characteristics of this curve can be altered by varying the ratio of $\alpha 9$ and $\alpha 10$ RNA injected into the oocytes from 1:1 to 10:1 $\alpha 9:\alpha 10$ (n ≥ 3 for each ratio). Furthermore, the biphasic nature of the curve is almost completely removed by "flooding" the injection ratio with $\alpha 10$ subunits at a ratio of 1:3 $\alpha 9:\alpha 10$. We interpret these results as demonstrating that the conotoxin Vc1.1 does not inhibit ACh-evoked currents when binding at the $\alpha 9-\alpha 10$ and $\alpha 9-\alpha 9$ interfaces in an equivalent manner and that the biphasic nature of the curve is a result of a mixed population of the receptors, in contrast to inferred stoichiometry using agonist-evoked concentration-response curves. We conclude that the receptor can form in either the ($\alpha 9)_2(\alpha 10)_3$ or the ($\alpha 9)_3(\alpha 10)_2$ stoichiometry *in vitro*.