The epilepsy associated $GABA_A$ receptor $\gamma_2 R43Q$ mutation increases sensitivity to Zn^{2+} inhibition

B. Bennetts,¹ P.J. Walsh,¹ K.S. Tan,¹ B.A. Cromer,² A.L. Clarke,² S. Petrou² and M.W. Parker,^{1,3} ¹St. Vincent's Institute of Medical Research, 9 Princes St., Fitzroy, VIC 3065, Australia, ²Howard Florey Institute, Florey Neurosciences Institutes, University of Melbourne, VIC 3010, Australia and ³Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010, Australia.

GABA_A receptors mediate rapid inhibitory signalling in the central nervous system, and mutations in various subunits of these pentameric receptors are associated with epilepsy. Receptors composed of α and β subunits are highly sensitive to inhibition by extracellular Zn²⁺ ions; however incorporation of a γ subunit disrupts two of three known Zn²⁺ binding sites and greatly reduces Zn²⁺ sensitivity. Here we demonstrate that the epilepsy associated $\gamma_2(R43Q)$ mutation greatly increases the susceptibility of heterologously expressed receptors to Zn²⁺ inhibition while preserving functional characteristics underpinned by presence of the γ_2 subunit. $\alpha_1\beta_2\gamma_2$ receptors are believed to contain a single N-terminal Zn²⁺ binding site. Mutation of residues contributed to this site by the α subunit ameliorated the effect of $\gamma_2(R43Q)$ on Zn²⁺ sensitivity, indicating that $\gamma_2(R43Q)$ allosterically affects Zn²⁺ binding or affects signal transduction, rather than directly interacting with Zn²⁺. This assertion was bolstered by the increased Zn²⁺ sensitivity of mutations, $\gamma_2(K289M)$ and $\gamma_2(R139G)$, and found that they did not substantially increase sensitivity to Zn²⁺ inhibition. Increased Zn²⁺ sensitivity may be physiologically important in hippocampal neurones, where synaptic Zn²⁺ reaches high enough levels to modulate GABAergic signalling, and may represent a novel mechanism underlying the increased occurrence of febrile seizures reported in patients harbouring the $\gamma_2(R43Q)$ mutation.