Properties and proteolytic activity of m-calpain in rat skeletal muscle

J.P. Mollica, R.M. Murphy and G.D. Lamb, Department of Zoology, La Trobe University, Melbourne, VIC, 3086, Australia.

m-Calpain is a ubiquitously expressed Ca²⁺-dependent protease with diverse functionality in skeletal muscle including, but not limited to, roles in cell migration, fusion and membrane repair. It is believed to require >100 μ M free [Ca²⁺] for activation (Cong *et al.*, 1989; Elce *et al.*, 1997), although this requirement may be dependent on phosphorylation status and/or phospholipid binding (Goll *et al.*, 2003). Given the peak tetanic [Ca²⁺] within skeletal muscle fibres normally reaches only 2-20 μ M (Baylor & Hollingworth, 2003), this raises the question of how m-calpain fulfills its role as a protease in skeletal muscle.

EDL and *soleus* muscles were dissected from male Long-Evans hooded rats sacrificed by anaesthetic overdose (4% v: v halothane) with approval of the La Trobe University Animal Ethics Committee. Western blotting was used to quantify the absolute amount of m-calpain by comparing known concentrations of pure rat recombinant m-calpain to whole skeletal muscle homogenates. The total amount of m-calpain was found to be $\sim 1.0 \mu mol/kg$ muscle mass in predominantly slow-twitch soleus muscle and $\sim 0.3 \mu mol/kg$ muscle mass in fast-twitch *extensor digitorum longus* muscle. Experiments in which mechanically skinned fibre segments were washed in aqueous solutions for set times showed that $\sim 75\%$ of the total m-calpain is freely diffusible within a quiescent fibre.

The proteolytic activity of m-calpain was also assessed using mechanically-skinned single fibres. Once skinned, the fibre segment was stretched to approximately twice its resting length so that no force-producing cross-bridges could be formed, with the resulting passive force being due to extension of titin, a large elastic sarcomeric protein that is a known substrate for m-calpain. Proteolysis of titin was gauged from the decline in passive force when a stretched fibre segment was exposed to 1 μ M rat recombinant m-calpain over a range of elevated free [Ca²⁺]. Proteolytic activity of m-calpain was observed even with free [Ca²⁺] as low as 4 μ M, and the rate of decline of passive force reached ~17% / min at 20 μ M free Ca²⁺. The rate of passive force decline was even greater at higher free [Ca²⁺], reaching ~250% / min at 500 μ M Ca²⁺. In the presence of 20 μ M free [Ca²⁺], porcine-derived native m-calpain added exogenously at 1 μ M resulted in proteolysis of titin at 9% / min, approximately half the rate observed with the rat recombinant mcalpain under the same conditions. Passive force decline over the physiological range of free [Ca²⁺] was also measured both with and without ATP present in the solution and proteolytic activity could always be rapidly stopped by lowering the free [Ca²⁺] to <10 nM. Furthermore, the proteolytic activity of mcalpain at 2 μ M free Ca²⁺ was unchanged irrespective of whether or not the m-calpain had been activated at higher [Ca²⁺] beforehand.

In conclusion, these findings demonstrate that m-calpain displays considerable proteolytic activity at physiological Ca^{2+} conditions occurring in muscle fibres. Furthermore, the findings distinguish its regulation from that of the other ubiquitous calpain, μ -calpain, which becomes more Ca^{2+} -sensitive following exposure to elevated [Ca^{2+}], suggestive that the ubiquitous calpains likely have quite different roles in skeletal muscle.

Baylor SM & Hollingworth S. (2003). The Journal of Physiology 551, 125-138.

Cong J, Goll DE, Peterson AM & Kapprell HP. (1989). *The Journal of Biological Chemistry* **264**, 10096-10103. Elce JS, Hegadorn C & Arthur JS. (1997). *The Journal of Biological Chemistry* **272**, 11268-11275. Goll DE, Thompson VF, Li H, Wei W & Cong J. (2003). *Physiological Reviews* **83**, 731-801.