Molecular determinants and functional consequences of the β_{1L} -adrenoceptor in the heart *P. Molenaar*,^{1,2,3} *P. Klenowski*,¹ A.B. Semmler,¹ K. Chee,¹ A.J. Kaumann,⁴ H. Kiriazis⁵ and X.-J. Du,⁵ Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD 4001, Australia, ²School of Medicine, University of Queensland, QLD 4032, Australia, ³Critical Care Research Group, The Prince Charles Hospital, QLD 4032, Australia, ⁴Department of Physiology, University of Cambridge, Cambridge, UK and ⁵Baker IDI Heart and Diabetes Institute, 75 Commercial Rd., Prahran, VIC 3004, Australia.

The β_1 -adrenoceptor (β_1AR) is activated by (-)-noradrenaline and blocked by all clinically used β -blockers. Some β -blockers, typified by (-)-CGP 12177 and (-)-pindolol not only block the β_1AR , but also activate it at higher concentrations (~2-3 orders of magnitude) than those required to block it (Kaumann & Molenaar, 2008). To accommodate these findings, it was hypothesized that β -blockers such as (-)-CGP 12177 and (-)-pindolol bind to the β_1 AR at two different sites, one that *blocks* (-)-noradrenaline from activating the receptor, the β_{1H} site, and another that *activates* the receptor, the β_{1L} site. Acute activation of β_{1L} ARs in the heart causes increases in contractile force, hastening of relaxation and increases the probability of arrhythmias (Kaumann & Molenaar, 2008). We have now sought to determine (1) the molecular determinants of the β_{11} AR and (2) the functional and pathological consequences of chronic activation of β_{11} AR. β_{1} ARs, β_{2} ARs and mutant β_1 ARs containing all (β_1 (β_2 TMDV)AR) or single amino acids of the fifth transmembrane domain (TMDV) β_2 AR were prepared and stably expressed in Chinese Hamster Ovary cells. Substitution of heterologous β_2 AR isoluceine for valine230 in TMDV of the β_1AR reduced the ability of the β_1AR to form a low affinity binding site of the β_1 AR. In mice, chronic infusion of (-)-CGP 12177 (0.01 mg 100 mg/kg/24h via osmotic minipump) for 2 or 4 weeks caused a dose-dependent increase in heart rate and cardiac contraction measured as fractional shortening (FS %) which was maintained for 4 weeks. In mice with trans-aortic constriction reducing lumen size by ~60-65% for a period of 8 weeks, chronic activation of β_{11} AR with (-)-CGP 12177 during weeks 5-8 caused a more severe cardiac hypertrophy, interstitial fibrosis and inflammation compared to trans-aortic constriction alone, indicating more severe myocardial remodelling. We conclude that chronic activation of β_{II} AR can be potentially harmful.

Kaumann AJ & Molenaar P (2008) Pharmacology & Therapeutics 118, 303-336.