Selective modulation of ion channel subunit expression to probe regional differences in vascular smooth muscle $\rm BK_{Ca}$ function

M.A. Hill,¹ Y. Yang,¹ Y. Sohma,² Z. Nourian,¹ M.J. Davis¹ and A.P. Braun,³ ¹Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65211, USA, ²Dept of Pharmacology, Keio University, Tokyo 160-8582, Japan and ³Dept of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.

 β 1-subunits enhance the gating properties of BK_{Ca} channels formed by α -subunits. In arterial vascular smooth muscle cells (VSMC) β 1-subunits are vital in coupling SR–generated Ca²⁺ sparks to BK_{Ca} activation, affecting contractility and blood pressure. Studies in cremaster and cerebral VSMC show heterogeneity of BK_{Ca} activity due to apparent differences in the β 1: α subunit ratio. To define these differences studies were conducted at the single channel level while siRNA was used to manipulate specific subunit expression.

Methods and Results: β1 modulation of the α-subunit Ca^{2+} sensitivity was studied using patch clamp techniques. Significant leftward shifts in BK_{Ca} channel open probability (NP0) *versus* membrane potential (Vm) curves (at $[Ca^{2+}]_i$ from 0.5 to 100µM), were observed in cerebral *versus* cremaster VSMC. As $[Ca^{2+}]_i$ increased from 0.5 to 100µM, the V1/2 values of channels decreased from 72.0 ± 6.1 to $-89 \pm 9mV$ in cerebral compared to 101 ± 10 to $-63 \pm 7mV$ in cremaster VSMC. Ca^{2+} set points (Ca0) were 12.1 and 5.0µM in cremaster and cerebral VSMC, respectively. Thus, at Vm of -30mV, a mean $[Ca^{2+}]_i$ of 39µM was required to open half of the channels in cremaster *versus* 16µM $[Ca^{2+}]_i$ in cerebral VSMC. Further, shortened mean open and longer mean closed times were evident in BK_{Ca} events from cremaster VSMC at either -30 or 30mV and any given $[Ca^{2+}]$. Uptake of siRNA into VSMCs was verified by studies of both a fluorescently labeled unrelated siRNA and β-subunit directed siRNA. Further, Western blotting confirmed a decrease in protein subunit expression. siRNA directed at the α subunit caused a decrease in BK_{Ca} function in both cell types. β-subunit directed siRNA decreased the Ca²⁺ sensitivity of BK_{Ca} in cremaster VSMC.

Conclusion: The data are consistent with a higher ratio of $\beta_{1:\alpha}$ subunit of BK_{Ca} channels in cerebral compared to cremaster VSMC. Functionally, this leads to both higher Ca^{2+} sensitivity and NPo for BK_{Ca} in the cerebral vasculature relative to that of skeletal muscle.