Imaging the motility of inositol trisphosphate receptors in intact mammalian cells using single particle tracking photoactivated localization microscopy (sptPALM)

I.F. Smith, D. Swaminathan and I. Parker, Neurobiology and Behavior, University of California, Irvine, CA 92697, USA. (Introduced by Bradley Launikonis)

Inositol trisphosphate receptors (IP₃Rs) are Ca²⁺-permeable channels in the membrane of the endoplasmic reticulum (ER) that liberate Ca²⁺ sequestered in ER stores to generate cytosolic Ca²⁺ signals that control diverse cellular functions including gene expression, secretion and synaptic plasticity (Berridge, Lipp & Bootman, 2000). These channels are gated by both the second messenger IP₃ and biphasically by Ca²⁺ itself. Activation of IP₃Rs by Ca²⁺ ions diffusing from neighboring channels thus results in a regenerative amplification by Ca²⁺-induced Ca²⁺ release (CICR). The extent of this functional coupling depends strongly upon the spacing between IP₃Rs, so that spatial localization of these channels is a major determinant of cellular Ca²⁺ signals. In particular, Ca²⁺ imaging studies in numerous cell lines and in *Xenopus* oocytes reveal local IP₃-mediated Ca²⁺ signals ("puffs") that arise through the concerted opening of several IP₃R channels within tight clusters.

The mechanisms underlying the aggregation and maintenance of IP_3Rs within these clusters are controversial. Puffs arise at just a few, fixed locations within a cell, suggesting that the clusters are relatively stable entities; and calcium blips generated by lone IP_3Rs are similarly immotile (Smith & Parker, 2009; Smith *et al.*, 2009). In contrast, imaging studies employing GFP-tagged or immunostained IP_3Rs show a dense distribution throughout the cell. Moreover, the majority IP_3Rs can diffuse freely within the ER membrane, and aggregate into clusters following sustained (minutes) activation of IP_3 signaling and/or cytosolic Ca²⁺ elevation, or even undergo clustering in response to IP_3 within just a few seconds (Taufiq-Ur-Rahman *et al.*, 2009).

These apparently different behaviors may be explained because Ca^{2+} imaging studies detect only functional IP₃Rs (those that mediate Ca^{2+} liberation from the ER), whereas imaging studies utilizing immunostaining or GFP-tagged IP₃Rs report on the behavior of the entire population of IP₃R proteins. We therefore hypothesized that a majority of IP₃Rs are motile, but are either functionally unresponsive or mediate Ca^{2+} liberation only during sustained global elevations of cytosolic [Ca^{2+}]. Local Ca^{2+} signals arise, instead, from a small subset of IP₃Rs that are anchored, individually or in clusters, by association with static cytoskeletal structures and which, possibly as a consequence of this anchoring, display high sensitivity to IP₃ to generate Ca^{2+} blips and puffs (Parker & Smith, 2010).

In order to test this hypothesis we have utilized the new generation of photoactivatable genetically encoded proteins to track the motility of thousands of individual IP_3R molecules with nanoscale spatial resolution and millisecond temporal resolution (sptPALM) (Manley *et al.*, 2008). We find that IP_3Rs can be distinguished into two groups with relatively high or low motility and are currently investigating whether there is a spatial correlation to the differences in observed motilities.

Berridge MJ, Lipp P, Bootman MD. (2000) Nature Reviews Molecular Cell Biology 1: 11-21.

Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J. (2008) *Nature Methods* **5**: 155-157.

Parker I, Smith IF. (2010) Journal of General Physiology 136: 119-127.

Smith IF, Parker I. (2009) Proceedings of the National Academy of Sciences USA 106: 6404-6409.

Smith IF, Wiltgen SM, Shuai J, Parker I. (2009) Science Signaling 2: ra77.

Taufiq-Ur-Rahman, Skupin A, Falcke M, Taylor CW. (2009) Nature 458: 655-659.