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The concentration of glutamate within a glutamatergic synapse is tightly regulated by excitatory amino
acid transporters (EAATs). EAATs function not only as glutamate transporters, but also as substrate activated
chloride (Cl−) channels. Several crystal structures of the EAAT homologue, GltPh, at different stages of the
transport cycle have been solved (Boudker et al., 2007; Reyeset al., 2009; Verdonet al., 2012; Yernoolet al.,
2004). In the most recent structure to be solved (Verdon et al., 2012) a small cavity lined by polarizable
residues, several of which have been implicated in Cl− permeation (Ryanet al., 2004), has been identified. We
hypothesize that throughout the transport cycle this cavity opens up to form the Cl− channel. In this study, site
directed mutagenesis of EAAT1 and electrophysiology have been utilized to determine if this cavity forms part
of the Cl− permeation pathway. Additionally, double cysteine mutants were generated in a cys-less EAAT1
background and analysed in an attempt to trap the protein in a purely Cl− conducting state to assist with further
structural studies of GltPh. When WT and mutant EAAT1 transporters are expressed inXenopus laevis oocytes,
the current observed at +60 mV is primarily attributed to Cl− conductance. For this reason, current at +60 mV is
indicative of Cl− channel function. When residues T396, S366 and P392 are mutated to valine, alterations in Cl−

channel function occur without effecting glutamate transport (See table for K0.5 values and currents at +60 mV)
thus indicating a role for these residues in the formation of the Cl− permeation pathway.

  
K0.5 L-Glutamate 

(µM) 

normalised I at 

+60 mV  

EAAT1 WT 28 ±2 1.8 ± 0.1 

T396V 40 ± 2 0.59 ± 0.01 

P392V 18 ± 1 4.1 ± 0.3 

S366V 15 ± 2 2.9 ± 0.5 
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After treatment of the double cysteine mutant M89C/I469C with the reducing agent dithiothreitol (DTT),
the current at +60 mV decreases. Subsequent treatment with the oxidizing reagent copper phenanthroline
(CuPhe) leads to a recovery of the current at +60 mV (see Figure). These results suggest that these two cysteine
residues can form a spontaneous crosslink and trap the transporter in a Cl− conducting state.
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