γ hydroxybutyrate activates specific GABA_{A} receptor subtypes

N.L. Absalom,¹ L. Eghorn,² N. Karim,¹ I. Villamusen,² A. Kobryn,¹ P. Wellendorph² and M. Chebib,¹ ¹Faculty of Pharmacy, University of Sydney, NSW 2006, Australia and ²Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.

 γ -hydroxybutyrate (GHB) is a small molecule with complex pharmacology. Present in low concentrations in the mammalian brain, it acts as a neuromodulator. When taken exogenously, it is used to treat narcolepsy and to ameliorate the withdrawal effects of alcohol, and is used as a recreational drug at higher concentrations, sometimes used as a date-rape drug. However, the pharmacology of GHB is unclear, and the full extent of its interactions with membrane proteins in the brain is yet to be fully elucidated. It has been demonstrated that GHB activates the GABA_B receptor at high concentrations, but the receptor that mediates other actions of GHB has yet to be identified.

Through biochemical and electrophysiological studies, we have identified that GHB activates a subset of GABA_ARs. The GABA_AR is a ligand-gated ion channel that forms a pentameric complex surrounding a central chloride-conducting pore. It is formed by a combination of α (1-6), β (1-3), δ , γ , ε , and π subunits according to a predetermined set of rules. We expressed a variety of known subtypes (>10, n>3 each) in *Xenopus* oocytes and determined that GHB elicited a chloride current from oocytes expressing $\alpha 4$, $\beta 1$ -3 and δ subtypes. GHB activated oocytes injected with $\alpha 4$, $\beta 1$ and δ subunits with an EC₅₀ of 140 nM (n=5). GHB demonstrated selectivity for the $\beta 1$ -subunit with rank potency order of $\beta 1>\beta 3>\beta 2$ when co-expressed with the δ -subunit. This activation was blocked by gabazine, a selective inhibitor of GABA_ARs (n=4). Furthermore, the GHB analogue NCS-382 that competes with GHB binding in the brain, also activated activated oocytes injected with $\alpha 4$, $\beta 1$ and δ subunits from knockout $\alpha 4$ and δ -GABA_AR mice demonstrated reduced binding in $\alpha 4$ but not δ -knockout mice. Taken together, these data demonstrate GHB activates $\alpha 4\beta \delta$ GABA_ARs with different potencies, but requiring the $\alpha 4$ -subunit for the maximum elicitation of a chloride current.