## Enhanced T-type calcium channel function, but not L-type or TRPC3 channels, augments uteroplacental arterial vascular tone in late pregnancy

S. Senadheera,<sup>1</sup> M. Tare,<sup>3</sup> L. Leader,<sup>2</sup> P.P. Bertrand,<sup>1</sup> T.V. Murphy<sup>1</sup> and S.L. Sandow,<sup>1</sup> <sup>1</sup>Physiology, School of Medical Sciences, University of New South Wales, NSW 2052, Australia, <sup>2</sup>School of Women's and Children's Health, University of New South Wales, NSW 2052, Australia and <sup>3</sup>Physiology, Monash University, VIC 3800, Australia.

**Introduction.** Control of vascular tone is altered in pregnancy, with the underlying mechanisms remaining largely unknown. Modulation of intracellular calcium is important for control of tone, with voltage-dependent calcium and transient receptor potential (TRP) channels being critical. This study determined whether TRP canonical type-3 (TRPC3) and L- and T-type voltage-dependent calcium channels contribute to augmented tone in pregnancy.

**Methods.** Age matched non-pregnant (NP) and late pregnant (LP; day 20) Sprague-Dawley rats were anesthetized (pentothal, 100mg/kg, i.p.) and uterine radial arteries isolated. TRPC3 expression and localization were determined using Western blotting and immunofluorescence, respectively. TRPC3, L- and T-type channel contribution to tone was determined using pressure myography (60mmHg) with pharmacological intervention.

**Results.** TRPC3 was expressed in the smooth muscle, at similar levels in NP and LP rats. Maximal passive diameters were 90±8 and 188±6µm, in NP and LP rats, respectively. Phenylephrine (PE) was a more potent constrictor of arteries from LP rats compared to NP. Pyr3 (0.001-3µM) inhibition of TRPC3 caused vasodilation in PE pre-constricted arteries (~80%; 1µM in NP; 0.3µM in LP), with no difference in dilation in NP (pEC50,  $5.9\pm0.7\mu$ M) and LP (pEC50,  $6.5\pm0.8\mu$ M) rat vessels. Alone, Pyr3 (1µM) nor nifedipine (1µM; L-type inhibitor) had an effect on PE-induced constriction. However, combined Pyr3 and nifedipine inhibited PE-induced constriction compared to vehicle in NP (Emax,  $46\pm5$  cf/.  $37\pm2$ , vehicle; *P*>0.05; Figure) and LP rat vessels (Emax,  $40\pm7$  cf/.  $18\pm2$ , vehicle; *P*>0.05; Figure). Subsequent T-channel inhibition with NNC 55-0396 (3µM) differentially inhibited PE-induced constriction compared to vehicle in NP (Emax,  $59\pm10$  cf/.  $37\pm2$ , vehicle; *P*>0.05; Figure) and LP (Emax,  $78\pm5$  cf/.  $18\pm2$ , vehicle; *P*>0.05; Figure), with greater inhibition in LP rat vessels.



\*Emax relative to vehicle. # Emax relative to Pyr3 + nifedipine.

**Conclusion.** Medial radial artery TRPC3 may serve to facilitate L- and T-type channel activity, with T-channel function having a greater role in the regulation of tone in LP rats.