Modulation of Cys-loop receptors to address CNS disorders

M. Chebib, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia. (Introduced by Trevor Lewis)

The $\alpha 4\beta 2$ nicotinic acetylcholine receptors are members of the Cys-loop family of ion channels. These receptor subtypes are widely expressed in the brain and are implicated in a wide variety of physiological processes. The $\alpha 4\beta 2$ nicotinic acetylcholine receptors exist in two stoichiometries, $(\alpha 4)2(\beta 2)3$ and $(\alpha 4)3(\beta 2)2$, with different sensitivities to agonist, but their pharmacological profiles are not well understood. Methyllycaconitine is believed to be a competitive antagonist of nicotinic acetylcholine receptors. Using the two-electrode voltage clamp technique in the *Xenopus* oocyte expression system, we demonstrate that inhibition of $\alpha 4\beta 2$ nicotinic acetylcholine receptors by methyllycaconitine is either surmountable or insurmountable depending on the different ratios of subunit mRNA injected. We propose that this is a result of the expression of different stoichiometries. Using an homology modelling approach, we identified D204 residue of the $\alpha 4$ subunit as interacting with the succinimide group of methyllycaconitine. After mutating this residue to a cysteine, we measured the rate of trapping of a methyllycaconitine analogue containing the reactive maleimide group. We demonstrate that this reaction results in reduced ACh-elicited currents in the ($\alpha 4$)3($\beta 2$)2 stoichiometry but not the ($\alpha 4$)2($\beta 2$)3 stoichiometry, indicating that MLA binds to the $\alpha 4$ - $\alpha 4$ interface of the ($\alpha 4$)3($\beta 2$)2. Consistent with other studies, we propose that the $\alpha 4$ - $\alpha 4$ interface is a structural target for potential therapeutics that modulate ($\alpha 4$)3($\beta 2$)2 nAChRs.