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Summary

1. World-wide epidemiological and experimental
animal studies demonstrate that adversity in fetal life,
resulting in intrauterine growth restriction (IUGR),
programs the offspring for a greater susceptibility to
ischemic heart disease and heart failure in adult life.

2. After cardiogenesis, cardiomyocyte endowment is
determined by a range of hormones and signalling
pathways that regulate cardiomyocyte proliferation,
apoptosis and the timing of multinucleation/terminal
differentiation.

3. The small fetus may have reduced cardiomyocyte
endowment due to the impact of suboptimal intrauterine
environment on the signalling pathways that regulate
cardiomyocyte proliferation, apoptosis and the timing of
terminal differentiation.

Introduction

World-wide epidemiological and experimental animal
studies demonstrate that adversity in fetal life, resulting in
intrauterine growth restriction (IUGR), programs the
offspring for a greater susceptibility to ischemic heart
disease and heart failure in adult life.1-9 It is currently not
clear how exposure to reduced substrate supplyin utero can
alter heart health some fifty years later. Howev er, the human
heart undergoes considerable maturationin utero, such that
the majority of cardiomyocytes, present shortly after birth,
beat for a lifetime.10-13 This has led to a significant body of
research focusing on the regulation of cardiomyocyte
maturation, endowment and growth in utero, particularly in
the last half of pregnancy; and how specific insults at
critical periods of development can alter the profile of
cardiomyocytes present before and after birth. This review
will focus on new insights into the regulation and
consequences of IUGR on cardiomyocyte endowment.

Cardiomyocyte development

After cardiogenesis, the fetal heart initially grows as
a consequence of mononucleated cardiomyocyte
proliferation. In the last trimester and shortly after birth,

these mononucleated cardiomyocytes cease proliferating,
due to the absence of karyokinesis and/or cytokinesis.14 The
final endowment of cardiomyocytes in the newborn heart is
the result of a highly orchestrated balance between the
creation of cardiomyocytes from cardiac progenitor cells in
early gestation, subsequent cardiomyocyte proliferation
across gestation, apoptosis and the critical timing of
terminal differentiation. Typically, perturbations during
pregnancy result in IUGR in the second half of pregnancy,15

therefore this review will include the regulation of
cardiomyocyte endowment after cardiogenesis.

Cardiomyocyte proliferation

During development, cardiomyocyte proliferation is
regulated by paracrine factors secreted from the
epicardium,16 endocardium16-17 and fibroblasts,18 in
addition to endocrine growth hormones.11 In response to
mitotic stimuli, D-type cyclins and their catalytic partners
CDK4 and CDK6 accumulate in the nucleus, which then
phosphorylate and deactivate retinoblastoma protein (Rb),
enabling cell cycle progression from the first gap phase (G1)
to initiate DNA synthesis (S phase).19 Cyclin D/CDKs
facilitate the cell cycle by sequestering CDK inhibitors,
p21Cip1 and p27Kip1, allowing S phase initiation and
progression through the activity of cyclin E/CDK2 and
cyclin A/CDK2, respectively20 (Figure 1). Cardiomyocyte
proliferation is initiated through mainstream canonical
mitogenic signalling pathways, such as the
phosphoinositide 3-kinase (PI3K)/Akt and Ras/extracellular
signal-related kinase (ERK) pathways.14,16,21-22Specifically,
the PI3K/Akt pathway promotes proliferation by
phosphorylating and deactivating glycogen synthase
kinase-3β (GSK-3β). GSK-3β acts as a negative regulator
of proliferation by phosphorylating cyclin D1,23 causing its
nuclear export and proteasomal degradation, thereby
preventing progression from G1 to S phase. Activation of
Akt also reduces the expression of p21Cip1 and p27Kip1

through FOXO transcription factors,24 which in turn
promote both CDK2 activity and progression to S phase.
The Ras/ERK pathway increases expression of cyclin D1
both directly25 and indirectly through down-regulation of
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Figure 1. Proliferation of fetal mononucleated cardiomyocytes is regulated by multiple signalling pathways that stimu-
late or inhibit cyclins and cytokinesis. Promotion of cell cycle progression is indicated by black lines and inhibition is indi-
cated by red lines. FGF-2: fibroblast growth factor 2, FGFR: fibroblast growth factor receptor, NRG-1: neuregulin-1,
ErbB2/4: heterodimer of ErbB2 and ErbB4, IGF-1: insulin-like growth factor-1, IGF-2: insulin-like growth factor-2,
IGF-1R: insulin-like growth factor-1 receptor, CAs: catecholamines,β-AR: β adrenergic receptor, Ang-II: angiontensin II,
AT-R: angiotensin receptor, ANP: atrial natriuretic peptide, PI3K: phosphoinositide-3 kinase, Akt: protein kinase B, ERK,
extracellular signal-related kinase, GSK-3β: glycogen synthase kinase-3β, T3: thyroid hormone, CDK: cyclin dependent
kinase. G1: first gap phase, S: DNA synthesis phase, G2: second gap phase, M: mitosis, G0: gap zero phase (resting/quies-
cent).

anti-proliferative genes such as Tob1 and JunD.26-29 Recent
data suggest that ERK and Akt activation leads to
phosphorylation and inhibition of p27Kip1.30 ERK is also
required for the translocation of CDK2 to the nucleus31 and
its subsequent phosphorylation,32 which results in cyclin E
association and cell cycle progression from G1 to S phase.
There is potential cross talk between the PI3K/Akt and
Ras/ERK mitogen signalling pathways.27

Studies involving mice, rats and chickens have
contributed greatly to the understanding of cardiomyocyte
proliferation. In vitro administration of extracellular
mitogens such as fibroblast growth factor (FGF) -233 and
neuregulin-1 (NRG-1)34 stimulate proliferation of
cardiomyocytes from embryonic chickens and fetal rats,
respectively. The mitotic actions of both FGF-2 and NRG-1

are dependent on the activation of the PI3K/Akt
pathway.35-36 Additionally, in vitro exposure to insulin-like
growth factor (IGF) -137 and IGF-238 results in greater DNA
synthesis in fetal cardiomyocytes from mice and rats,
respectively. Furthermore, conditional knockout of their
receptors, insulin receptor (INSR) and IGF1 receptor
(IGF1R), in the myocardium of embryonic mice, results in
decreased ventricular cardiomyocyte proliferation in the
first half of gestation.39 Activation of IGF1R leads to
activation of both the PI3K/Akt and Ras/ERK signalling
pathways,40 however, less is known about the specific
mitotic signalling pathways downstream of the INSR in
cardiomyocytes. Catecholamines have also been implicated
in cardiomyocyte proliferation, such that blocking
β-adrenergic receptor (β-AR) activation in vivo, in neonatal
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rats, decreases cardiomyocyte mitosis and deactivates p70
ribosomal protein S6 kinase, which is downstream of
PI3K/Akt.41

In addition to the activation of mitotic signalling
pathways, proliferation can be regulated by cytokinetic
mechanisms. Embryonicmice with cardiac specific
deletion of Survivin and neonatal rats with Survivin small
interfering RNA (siRNA) knockdown have fewer
cardiomyocytes, due to a reduction in proliferation.42

Survivin is a key regulator of mitosis and cytokinesis
because it is a component of the chromosomal passenger
complex, essential for appropriate chromosomal separation
and cytokinesis (reviewed by Lenset al., 200643). It is
currently unknown if IUGR influences the regulation of
components of the chromosomal passenger complex.

Recent studies by Heallenet al. demonstrated that
the canonical Wnt signalling pathway, which is an essential
regulator of pre-cardiac mesoderm cell proliferation and
differentiation into cardiomyocytes, promotes
cardiomyocyte proliferation.44 Through the use of
conditional knockouts ofSalv to selectively inhibit Hippo
signalling in mice, Haellenet al. demonstrated that Hippo
signalling is essential for the appropriate control of
cardiomyocyte proliferation and heart size; due to its
inhibition of transcription factors that are promoted by the
Wnt/β-catenin signalling pathway. Ablating Hippo
signalling led to embryos with larger hearts containing
more cardiomyocytes. Interestingly, this cardiomegaly was
specifically due to exaggerated cardiomyocyte proliferation
and was not associated with altered fibroblast, smooth
muscle cell or cardiac progenitor cell proliferation; and was
observed in the left and right ventricle, despite these
cardiomyocytes originating from different heart fields.44

Pathological conditions in fetal life that result in fetal
growth restriction occur predominantly in late gestation15

and often lead to changes not only in the endocrine
environment, but also in both preload and afterload.
Therefore, the effects of these changes on cardiomyocyte
proliferation have been studied in sheep, where
cardiomyocyte maturation begins in late gestation as in
humans, unlike postnatal life such as rats, mice and
chickens (Table 1). The endocrine effects have been studied
in sheep models of IUGR (reviewed by Morrison, 200845)
and show that there is a decrease in plasma IGF-1,46

glucose47 concentrations and an increase in plasma
cortisol,47 noradrenaline48 and adrenaline48 concentrations
in late gestation. Different models of IUGR in sheep cause
no change49 or an increase50-52 in mean arterial pressure.

In late gestation, increased cardiac systolic load53-54

and a range of hormonal and growth factors including
IGF-140 and angiotensin II (Ang-II)55 have been shown to
stimulate proliferation of mononucleated cardiomyocytes
(reviewed by Thornburg et al., 201111). Ang-II acts through
the Ras/ERK pathway in cardiomyocytes,55 but evidence
from mouse embryonic stem cells suggests it may also
activate the PI3K/Akt pathway.56

Studies in sheep fetuses provide conflicting results
regarding the regulation of cardiomyocyte proliferation by
cortisol. Increased cortisol concentrations in late gestation

leads to maturation of fetal organs prior to birth, but a
comprehensive study in sheep fetuses identified cortisol as a
potent cardiomyocyte mitogen.57 In contrast, a similar
intrafetal infusion of cortisol has been reported to decrease
DNA content in the left ventricle58 and adrenalectomized
sheep fetuses exhibit greater cardiomyocyte proliferation,
thus suggesting cortisol inhibits progression through the
cell cycle.59 The signalling pathway that links cortisol to
proliferation of cardiomyocytes, however, remains unclear.

In the late gestation sheep fetus, cardiomyocyte
proliferation is inhibited in the presence of reduced cardiac
systolic load,60 thyroid hormone (T3)

61 and atrial natriuretic
peptide (ANP)62 (reviewed by Thornburg et al., 201111).
Specifically, T3 increases the protein abundance of the CDK
inhibitor p21Cip1, while simultaneously decreasing the
protein abundance of cyclin D1.61 ANP does not inhibit the
basal rate of proliferation, however, Ang-II stimulated
proliferation is inhibited due to reduced Akt and ERK
activity62 (Figure 1).

Apoptosis of cardiomyocytes

Apoptosis is critical for appropriate cardiovascular
development (reviewed by Poelmann & Gittenberger-de
Groot, 200563 and Porrelloet al., 200864) and is tightly
regulated and controlled by two main pathways; the
intrinsic and extrinsic pathways, which regulate apoptosis
through mitochondrial activity and death receptors,
respectively.65 Upon release of cytochrome C from the
mitochondria or ligation of the death receptors (DRs),
‘initiator’ caspases such as procaspase 9 and procaspase 8,
are cleaved to their active form (Figure 2). Activation of
‘initiator’ caspases results in the cleavage and activation of
‘effector/executioner’ caspases (e.g. 3, 6 and 7), which
cause the biochemical and morphological changes
associated with apoptotic cell death.66-67 The apoptotic
pathway is regulated at various levels by members of the
Bcl-2 family of proteins, consisting of both pro-apoptotic
(Bad, Bax, Bak, tBid, Bim and Bmt) and anti-apoptotic
(Bcl-2 and Bcl-XL) elements.65 Anti-apoptotic proteins of
the Bcl-2 family act at the mitochondrial level to block the
release of cytochrome C, whereas pro-apoptotic proteins
inhibit the action of the anti-apoptotic proteins.65 The
cleavage and activation of anti-apoptotic Bid by caspase 8
allows for the extrinsic pathway to initiate the intrinsic
(mitochondrial dependent) apoptosis pathway.68

In the rat heart, there is very little cardiomyocyte
apoptosis either prenatally (1.4-2%)69-70 or at 21 days
postnatal life.71 However, in the first day of postnatal life,
there is considerable apoptosis,71 especially in the right
ventricle, which undergoes extensive remodelling due to the
abrupt changes in blood flow patterns and circulatory
resistance shortly after birth (reviewed by Smolich, 199572).
It is important to note that in the rat heart, this period of
cardiac remodelling and apoptosis corresponds to a period
where the majority of cardiomyocytes are mononucleated
and still capable of proliferating73 (Table 1). In the sheep,
this remodelling and apoptosis occurs at a time when the
majority of cardiomyocytes are terminally differentiated.74
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Figure 2. Apoptosis is critical for cardiac development. It can be mediated by the mitochondrial dependent intrinsic path-
way and the death receptor mediated extrinsic pathway. DRs: death receptors, FADD: Fas-Associated protein with Death
Domain.

Apoptosis in the late gestation sheep heart is also minimal
(<0.05% of cardiomyocytes).75 At birth, the majority of
human cardiomyocytes are mononucleated76 (Table 1),
however, they lose the ability to proliferate shortly after
birth. It is currently unclear if the remodelling of the right
ventricle occurs when human cardiomyocytes are still
capable of proliferating.

Multinucleation and terminal differentiation of
cardiomyocytes

In late gestation and shortly after birth,
mononucleated cardiomyocytes cease proliferating due to
the absence of karyokinesis and/or cytokinesis. If a
cardiomyocyte undergoes karyokinesis in the absence of
cytokinesis, it becomes a multinucleated (predominantly
binucleated) cardiomyocyte and is terminally differentiated
10, 77(Table 1). Unlike humans, mice and rats are born with
hearts comprised of mononucleated cardiomyocytes that do
not undergo binucleation or cease proliferating until after
birth.73, 78 Consequently, injuries to the neonatal mouse
heart before 7 days of age can result in cardiomyocyte
regeneration due to the proliferation of existing
mononucleated cardiomyocytes.79 To date the signals that
prevent mononucleated cardiomyocytes from undergoing
karyokinesis to become polyploid, or cytokinesis to become

multinucleated, are not well understood.Studies in rats
demonstrate that during binucleation there is a simultaneous
downregulation of cyclins and CDKs associated with G1/S
and G2/M transition and an upregulation of cyclins and
CDKs associated with G1 phase.80 Recent studies by Di
Stefanoet al. demonstrate that simultaneous knockdown of
CDK inhibitors p21Cip1, p27Kip1, and p57Kip2 by siRNAs in
cultured neonatal and adult rat cardiomyocytes can result in
entry to S-phase and a proportion of cardiomyocytes
completing karyokinesis.81 Transgenic mouse studies have
demonstrated that overexpression of cyclin D1 and cyclin
G1 induce multinucleation,82-83but it has been suggested by
Naqvi et al.84 that terminal differentiation may not be
simply due to altered expression of genes that regulate the
cell cycle.

Recent studies by Porrelloet al.demonstrate that cell
cycle withdrawal and multinucleation may be regulated by
microRNAs (miRs).85 By comparing the expression of
miRs in cardiomyocytes from mice before (1 day of age)
and after (10 days of age) the transition of the
cardiomyocyte pool from proliferative mononucleated
cardiomyocytes to non-proliferative multinucleated
cardiomyocytes, Porrello et al. identified the miR-15
family member, miR-195, as the most upregulated miR
during this period. Furthermore, premature overexpression
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Table 1. Timing of multinucleation and proportion of mononucleated and multinucleated cardiomyocytes in adult life in a
range of species.

Species Length of
gestation/
incubation
(days)

Timing of binucleation
(days)

Mononucleated
cardiomyocytes (%)

Binucleated
cardiomyocytes (%)

Cardiomyocytes
with >2
nuclei (n)
(%)

Before birth/
hatching

After birth/
hatching

At birth/
hatching

Adult At birth Adult Adult

Human 280 Begins by
∼22477

unknown ∼9076 74 ± 893 8.8 ± 5.376 25.5 ± 893

5776

54-6394

∼0.5 (3n and
4n)93

Rat 21 n/a 4-1273 > 9573 10-1495 2.9 ± 1.873 85-8995 1-5% (3n and
4n)95

Mouse 19 n/a 3-1096 ∼9896 < 8.596 1.5 ± 0.396 91.596 unknown

Chicken 21 n/a Begins by
1597

10097 43.6 ± 4.6
at 42 days97

097 44.2 ± 2.8
at 42 days97

∼11.5
at 42 days97

Sheep 145-150 Begins
10075-11074

Ends ∼474 Between 16.8
± 2.6 and
21.1± 2.274

8 ± 1.5 at 4-6
weeks74

Between 78.9
± 2.2 and
83.2 ± 2.674

92.0 ± 1.5 at
4-6 weeks74

unknown

Pigs 114 unknown unknown unknown ∼5
at 6 mo98

unknown ∼12
at 6 mo98

∼83 (3n-16n)
at 6 mo98

of miR-195 in embroyonic hearts resulted in smaller hearts
that had a reduced number of cells in the cell cycle and a
greater percentage of multinucleated cardiomyocytes at
postnatal day 1, suggesting premature cell cycle arrest.
Furthermore, postnatal knockdown of the miR-15 family
resulted in a greater number of mitotic cardiomyocytes at
12 days of age, however, this did not involve an increase in
the number of cardiomyocytes undergoing cytokinesis and
suggests that the miR-15 family is not alone in preventing
cardiomyocyte proliferation in postnatal hearts.

Despite the absence of proliferation in the adult heart
under basal conditions,86 studies of human hearts after
myocardial infarction suggest that a small proportion of
cardiomyocytes are capable of cytokinesis,87 albeit
insufficient to maintain/repair heart function. Similarly, in
vitro stimulation of adult rat cardiomyocytes with NRG-1
causes DNA synthesis followed by completion of
cytokinesis in approximately 0.6% of previously quiescent
mononucleated cardiomyocytes.36 Engel et al.88 have
identified the signalling molecule, p38 mitogen-activated
protein (MAP) kinase (p38), as an inhibitor of adult
cardiomyocyte cytokinesis. Inhibitingp38 in vitro results
in an approximate 3.8–fold increase in adult
cardiomyocytes undergoing cytokinesis after stimulation
with FGF-1 compared to FGF-1 stimulation alone.88 p38
has also been implicated as a potential regulator of
cytokenetic genes such as components of the chromosomal
passenger complex (Aurora B, INCENP and Survivin) and
actin assembly genes such as Anillin.88-89 In addition, Engel
et al.89 have identified Anillin recruitment and localization
during anaphase and late cytokinesis as being essential for
the completion of cytokinesis and its absence as a cause of
binucleation.

It is not clear why mature mammalian

cardiomyocytes have a limited capacity to proliferate,
whilst cardiomyocytes from species such as newts and
zebrafish retain the ability to replicate DNA and divide.90-91

The physiological benefit of multinucleated cardiomyocytes
is uncertain, but it has been proposed to be an adaptive
response in cells with a high metabolic demand, such as
skeletal muscle cells, where the capacity to generate twice
the ribonucleic acid (RNA) for protein synthesis might be
advantageous.14 Studies in sheep, where binucleation
begins prenatally, as it does in humans, demonstrate that the
maximum Ca2+-activated force and adult cardiac troponin I
and C protein expression increase with the decrease in the
percentage of mononucleated cardiomyocytes in late
gestation.92 The timing of binucleation can be accelerated
or delayed by alterations to the fetal environment, as
discussed below.

Cardiomyocyte turnover and polyploidization in postnatal
life

It appears that terminal differentiation of
cardiomyocytes is complete soon after birth in humans and
therefore it has been proposed that the human heart lacks
the capacity to generate more cardiomyocytes postnatally.
Although it is still accepted that adult cardiomyocytes,
unless experimentally stimulated, do not undergo
cytokinesis,14 studies carried out in several laboratories
have identified the presence of human cardiac stem cells
(hCSCs) that have the ability to generate new
cardiomyocytes.99-101 Currently, the contribution of hCSCs
to the replacement and turnover of cardiomyocytes after
birth is contentious. Some studies have suggested that
∼50% of cardiomyocytes are replaced in a normal life
span,12-13 whereas others suggest that the entire
cardiomyocyte pool is replaced 11 to 15 times in the life of
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Figure 3. The effect of PaO2 on fetal growth. Both fetal body weight (A;r2 = 0.553,P < 0.001,y = 0.21x - 0.05) and
heart weight (B;r2 = 0.501,P < 0.001,y = 1.45x + 1.20) are correlated with mean gestational PaO2 in the late gestation
sheep fetus (137-145 days; term∼150 days). Open circles are control fetuses, filled circles are fetuses exposed to placental
insufficiency.

men and women respectively, with the maximum age of
cardiomyocytes being 23 years.102 Studies in mice
demonstrate that the annual renewal rate of cardiomyocytes
is approximately 1.1%,96,103 which is similar to an
estimation made from carbon dating studies in humans.12-13

Regardless of the actual rate of cardiomyocyte turnover,
hCSCs are not capable of replacing enough of the
cardiomyocytes lost due to aging and injury (e.g. due to
myocardial infarction) to maintain cardiac function and
prevent heart failure. Therefore, the impact of restrictions to
fetal substrate supply on cardiomyocyte endowment at birth
has implications for the individuals’ vulnerability to
cardiovascular disease in adult life.

Despite the inability of adult cardiomyocytes to
undergo cell division, they do retain the ability to undergo
DNA replication. In the human heart, 90% of
cardiomyocyte nuclei are diploid (2c) shortly after birth,
whereas the majority of adult cardiomyocyte nuclei are
tetraploid (4c).104 Ploidy is positively related to heart
weight105-106 and increases further in response to
injury.106-107 Studies in sheep, where the majority of
binucleation and terminal differentiation occurs prenatally,
identify that premature lambs have a greater percentage of
tetraploid mononucleated cardiomyocytes compared with
term controls at two months of age.108 Studies in rats, where
gastroenteritis was induced during the period of
binucleation and terminal differentiation (4-12d postnatal),
demonstrated that polyploidization can also be increased.109

The regulation and advantage/disadvantage of
polyploidization is not well understood. Cardiomyocyte
polyploidization is suggested to be protective against
hypoxia induced apoptosis, but maladaptive for aerobic
metabolism.109 Consequently, alterations to cardiomyocyte
ploidy during development may have implications for adult
heart health.

The effect of IUGR in species where cardiomyocyte
maturation occurs after birth

Maternal protein restriction during pregnancy results
in reduced birth weight, heart weight and number of
cardiomyocytes at birth in rats.110 Lim and colleagues
extended maternal protein restriction during pregnancy to
the lactation period, because cardiomyocyte binucleation in
rats occurs postnatally,111 but found no difference in the
total number of cardiomyocytes in the offspring compared
with controls at four weeks of age.111 These studies are
important because they suggest the presence of a critical
window during cardiomyocyte maturation when
cardiomyocyte endowment can be rescued. In rats, they also
suggest that matching the prenatal and postnatal
environment until cardiomyocyte maturation is complete,
may be beneficial, but the opposite is true for nephron
number.112 Moreover, these studies demonstrate that heart
weight and cardiomyocyte number are positively
related.110-111

Maternal hypoxia during late gestation results in
reduced birth weight in rats and offspring who have a
greater susceptibility to ischemia reperfusion (I/R) injury in
adulthood.113-115 Furthermore, I/R injury in these adult
offspring results in a larger infarct and diminished post-
ischemic recovery of left ventricular function when
compared to controls,113,115 which is accompanied by an
increase in caspase 3 activity and cardiomyocyte
apoptosis.113 This vulnerability may be due, in part, to
decreased capillary density116 and cardiac remodelling that
includes increased collagen I and III and fibrillar thickness
and density.115 Interestingly, prior to I/R injury, these rats
have the same body weight, heart weight and left ventricle
weight compared to controls, but their cardiomyocytes have
a larger cross sectional area.114 These data suggest that rats,
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whose mothers were exposed to hypoxia during pregnancy,
have fewer cardiomyocytes and a heart weight that has been
maintained by greater hypertrophy of the remaining
cardiomyocytes. This premise is supported by studies of the
hypertrophic heart rat (HHR) model, which develops
cardiac hypertrophy in the absence of increased blood
pressure, by 2 months of age.117 At 2 days of age, these rats
have smaller hearts containing smaller and fewer
cardiomyocytes, which have become prematurely
binucleated and exited the cell cycle.118 Unlike maternal
protein restriction studies, IUGR caused by maternal
hypoxia can disrupt the positive relationship between heart
weight and cardiomyocyte number in the postnatal heart.114

Fetuses of dams exposed to hypoxia have increased
cardiomyocyte apoptosis and premature binucleation and
exit from the cell cycle in the heart in late gestation.69 One
would presume therefore that maternal hypoxia would
result in decreased numbers of cardiomyocytes in offspring
at birth. In the rat, based on the observed ‘catch up’ of
cardiomyocyte endowment in offspring exposed to maternal
protein restriction,111 it is not known if a proposed deficit in
cardiomyocytes at birth will be corrected after birth, before
cardiomyocytes have completed terminal differentiation.73

Similarly, it is not known if the proposed deficit in
cardiomyocyte number in the heart of postnatal offspring
exposed to maternal hypoxia is a direct consequence of
fewer cardiomyocytes at birth or if it is due to greater
apoptosis in the heart of the IUGR offspring compared to
control offspring post weaning. Furthermore, it has yet to
be answered if IUGR, in an animal model where
binucleation occurs prenatally, or in fact in humans, results
in a deficit in the number of cardiomyocytes before or after
birth.

The effect of IUGR in species where cardiomyocyte
maturation occurs before birth

To date, there have been no studies published
identifying the effect of IUGR on cardiomyocyte
endowment in a species where binucleation of
cardiomyocytes begins before birth. A study in sheep, a
species where cardiomyocyte maturation occurs prenatally,
demonstrates that naturally occurring variation in birth
weight changes cardiomyocyte endowment. Specifically,
birth weight and body and heart weight at nine weeks of
age were positively correlated with the number of left
ventricular cardiomyocytes.119 These data support evidence
from maternal protein restriction studies in rats, which
show heart weight is positively related to total
cardiomyocyte number.110-111

The use of a sheep model of chronic fetal hypoxemia,
caused by fetal anemia, has identified alterations in fetal
heart growth and poor cardiovascular outcomes in the adult
sheep.120-121Sheep models of placental insufficiency result
in chronic fetal hypoxemia, hypoglycemia,
hypercortisolemia, low birth weight and reduced heart
weight in late gestation, which are endocrine and growth
changes that also occur in human pregnancies of
IUGR.122-124Studies in our laboratory have shown that in a

model of chronic placental restriction, fetal body weight
and heart weight are correlated with fetal arterial PO2
(PaO2) across late gestation, such that the greater the degree
of hypoxemia, the greater the fetal growth restriction and
reduction in heart growth (Figure 3). There is, however, no
change in heart weight relative to body weight in IUGR
compared to control fetuses.122

Studies using two different sheep models of IUGR,
induced by placental insufficiency, hav e investigated
cardiomyocyte development. One involves surgical
removal of endometrial caruncles in the non-pregnant ewe
to reduce placental size (placental restriction, PR),122 while
the other involves embolization of the uterine artery of the
pregnant horn to reduce uteroplacental blood flow in late
gestation (UPE).123-124 In both models, placental
insufficiency caused a delay in the transition of
mononucleated cardiomyocytes to binucleated
cardiomyocytes (Figure 4). This delay in maturation is in
direct conflict with the results from maternal hypoxia
studies in rats, which demonstrated an acceleration of
binucleation,69 reflecting the importance of cardiomyocyte
maturation timing differences between species.

Figure 4. Regardless of the model of IUGR employed,
IUGR in sheep results in an increased percentage of
mononucleated cardiomyocytes across late gestation.122-124

Control, blue circles; uteroplacental embolization
(UPE),123-124 red triangles; placental restriction (PR),122

red diamonds.

A reduction in fetal substrate supply changes
cardiomyocyte growth patterns, but these changes are
dependent on the timing, duration and severity of the
placental insufficiency. For example, placental insufficiency
by UPE for up to 20 days is associated with a decrease in
the percentage of mononucleated cardiomyocytes
undergoing proliferation,123 however this is not observed in
PR, where placental insufficiency has occurred over at least
the last half of gestation.122 Interestingly, the reverse is true
for cardiomyocyte size, where PR results in a decrease in
the absolute size of cardiomyocytes,122 with no change in
absolute cardiomyocyte size observed after UPE.123 Despite
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a reduction in absolute cardiomyocyte size in PR fetuses,
the size of each cardiomyocyte is larger in relation to heart
weight when compared to controls. Studies in sheep
demonstrate that the size of cardiomyocytes relative to heart
weight decreases with gestation in the normally grown
fetus, but that this is delayed in the IUGR fetus suggesting
that there may be fewer cardiomyocytes in the heart of the
IUGR fetus (Figure 5). The use of both sheep models of
placental insufficiency highlights how differences in the
degree and timing of fetal insults can result in different
cardiomyocyte phenotypes.

Figure 5. The effect of placental restriction (PR) on car-
diomyocyte size. In the normally grown sheep fetus (open
bars) the length of binucleated cardiomyocytes relative to
heart weight decreases with increasing gestational age,
however, this does not occur in the PR fetus (solid bars),
such that there is an increase in the relative length of binu-
cleated cardiomyocytes in the PR fetus compared to the
normally grown fetus in late gestation.92,122Different super-
scripts (e.g.a, b, c) denote a significant difference between
gestational ages in the normally grown fetus. * denotes a
significant difference between normally grown fetuses and
PR fetuses at 139-146 days gestation (P < 0.05).

Postnatal cardiac consequences of IUGR

The adaptation of the fetal heart to a period of
reduced substrate supply and decreased body growth has
critical consequences for heart health in later life because at
birth, the human heart contains most of the cardiomyocytes
it will have for life.10-13 Consequently, in cases where the
endowment of cardiomyocytes is reduced, the remaining
cells will be required to increase in size in order to increase
their capacity for contractile force generation, with a
consequent increased risk of coronary heart disease.11,64,125

A reduction in cardiomyocyte endowment is not the only
consequence of IUGR that may change the profile of
cardiomyocytes present in the postnatal heart. Increasing
evidence suggests the regulation of cardiomyocyte
metabolism,126-127 contractility,128 protection/

survival113-114,129-130and hypertrophy114,122,131may each be
affected by a reduced substrate supplyin utero.

Concluding remarks

The data discussed in this review suggest that IUGR
induced by reduced substrate supply in different species
leads to alterations in cardiomyocyte development and may
lead to reduced cardiomyocyte endowment. It is not known,
however, if the observed changes to cardiomyocyte
development are all induced by a common mechanism
ev oked by suboptimal substrate supply, or whether
deficiencies in specific substrates, such as protein or
oxygen, induce specific consequences to cardiomyocytes.
This is important for the understanding of the mechanisms
that regulate cardiomyocyte endowment. It is also not clear,
if a window of time exists when cardiomyocyte endowment
can be rescued. Studies in rats suggest that the early
postnatal period may represent such a window, but it is not
clear if this is due to the remodelling of the heart that
occurs during postnatal changes in the circulatory system or
due to the postnatal timing of cardiomyocyte terminal
differentiation in rats. It is clear that further studies are
required to address these critical issues and to determine
whether or not intervention strategies are likely to be
beneficial in restoring cardiomyocyte endowment.
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