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Summary these mononucleated cardiomyocytes cease proliferating,
_ S _ due to the absence of karyokinesis andytokinesis!* The
1. World-wide epidemiological and xperimental  fina endowment of cardiomygtes in the newborn heart is
animal studies demonstrate that ewhity in fetal life, the result of a highly orchestrated balance between the
resulting in intrauterine growth restriction (IUGR), creation of cardiomyocytes from cardiac progenitor cells in
programs the @pring for a greater susceptibility 10gqry gestation, subsequent cardiomgec proliferation
ischemic heart disease and heart failure in adult life. across gestation, apoptosis and the critical timing of
2. After cardiogenesis, cardiomyocyte emaioent is erminal differentiation. ypically, perturbations during
determined by a range of hormones and Sig”a"irlgregnanyresult in IUGR in the second half of greang,®
pathways that regulate cardiomyocyte proliferationyherefore this ndew will include the regulation of

apoptosis and the timing of muItinucleation/termina{:ardiomyocyte endowment after cardiogenesis.
differentiation.

3. The small fetus may ke reduced cardiomygte Cardiomyocyte proliferation
endavment due to the impact of suboptimal intrauterine . ) ) o
environment on the signalling pathways thatgukate During development, cardiomyoge proliferation is

cardiomyogte proliferation, apoptosis and the timing ofédulated by paracrine factors secreted from the
terminal differentiation. epicardiumt® endocardiutf’ and fibroblastd® in

addition to endocrine growth hormonésin response to
Introduction mitotic stimuli, D-type cyclins and their catalytic partners
_ _ ) ) ) ~ CDK4 and CDK6 accumulate in the nucleus, which then
~ World-wide epidemiological and experimental animalygsphorylate and deadtie retinoblastoma protein (Rb),
studies demonstrate that adsity in fetal life, resulting in enabling cell cycle progression from the firapghase (§
intrauterine - growth restriction (IUGR), programs thgq injtiate DNA synthesis (S phaséj. Cyclin D/CDKs
offspring for a greater susceptibility to ischemic heagggijitate the cell cycle by sequestering CDK inhibitors,
disease and hearilure in adult life!® It is currently not p21°P1 and p2¥Pl dlowing S phase initiation and
clear hav exposure to reduced substrate supplyteo can  rogression through the activity of cyclin E/CDK2 and
alter heart health some fifty years latdoweve, the human cyclin A/ICDK2, respectiely?® (Figure 1). Cardiomyade
heart undergoes considerable maturatiooteo, such that  rgjiferation is initiated through mainstream canonical
the majority of cardiomyocytes, present shortly after b'”h’nitogenic signaling  pathays, such as the
beat for a lifetimé%13 This has led to a significant body of phosphoinositide 3-kinase (PI3K)/Akt and Rasracellular
research focusing on the gidation of cardiomyogte signal-related kinase (ERK) pathys!#16:21-22Specifically,
maturation, endowment and grih in uteo, p@rti(_:ularly N the PI3K/Akt pathway promotes proliferation by
th_e_ last hz_ilf of pmgnany; and haov specific |nsult§ at phosphorylating and deadtting glycogen synthase
critical periods of deslopment can alter the profile of kinase-B (GSK-3). GSK-3 acts as a mgtive regulator
cardiomyogtes present before and after birth. Thige® o yrojiferation by phosphorylatingyclin D123 causing its
will focus on ne& insights into the regulation and clear export and proteasomal gdedation, thereby
consequences of IUGR on cardiomyocyte endowment. preventing progression from Gto S phase. Aatation of
Akt also reduces the expression of §24 and p2¥#rl
through FOXO transcription attors?* which in turn
After cardiogenesis, the fetal heart initially geoas promote both CDK2 activity and progression to S phase.
a nsequence of mononucleated cardioryy®c The Ras/ERK pathway increases expressionyofirc D1
proliferation. In the last trimester and shortly after birthpoth directl?> and indirectly through den-regulation of

Cardiomyocyte devel opment
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Figure 1. Proliferation of fetal mononucleated cardiomyocytes is regulated by multiple signalling pathways that stimu-
late or inhibit cyclins and cytokinesis. Promotion of cell cycle pigression is indicated by bl&dines and inhibition is indi-
cated by ed lines. FGF-2: fibroblast growth factor 2, FGFR: fibroblast growth factwreptor NRG-1: neuegulin-1,
ErbB2/4: heterodimer of ErbB2 and ErbB4, IGF-1: insulireligrowth factor-1, IGF-2: insulin-like gowth factor2,
IGF-1R: insulin-like gowth factor-1 eceptoy CAs: catebolamines 3AR: g adrenegic receptor Ang-11: angiontensin I,
AT-R: angiotensin @&ceptor ANP: atrial natriuretic peptide PI3K: phosphoinositide-3 kinas@kt: protein kinase B, ERK,
exracellular signal-related kinaseGSK-33. glycogen synthase kinase/ T,: thyroid hormone CDK: cyclin dependent
kinase G;: first gap phasgS: DNA g/nthesis phasés,: second gap phasé/: mitosis, G;: gap zeo phase (esting/quies-
cent).

anti-proliferatve genes such as Tobl and JufB° Recent are dependent on the aetion of the PI3K/Akt
data suggest that ERK and Akt aetion leads to pathway?>-36 Additionally, in vitro exposure to insulin-lik
phosphorylation and inhibition of p®7:30 ERK is also growth factor (IGF) - and IGF-28 results in greater DN
required for the translocation of CDK2 to the nucféasd synthesis in fetal cardiomyges from mice and rats,
its subsequent phosphorylatigfwhich results in cyclin E respectiely. Furthermore, conditional knockout of their
association and cell cycle progression fromt@&S phase. receptors, insulin receptorINSR and IGF1 receptor
There is potential cross talk between the PI3K/Akt andGF1R), in the myocardium of embryonic mice, results in
Ras/ERK mitogen signalling pathwas/s. decreased ventricular cardiomyocyte proliferation in the
Studies imolving mice, rats and chickens Jea first half of gestatiod? Activation of IGFIR leads to
contrituted greatly to the understanding of cardionyyec actvation of both the PI3K/Akt and Ras/ERK signalling
proliferation. In vitro administration of xtracellular pathway<® however, less is knan about the specific
mitogens such as fibroblast gt factor (FGF) -22 and mitotic signalling pathays downstream of the INSR in
neurgulin-1  (NRG-1§* stimulate proliferation of cardiomyogtes. Catecholamines Ve dso been implicated
cardiomyogtes from embryonic chickens and fetal ratsin cardiomyocyte proliferation, such that blocking
respectiely. The mitotic actions of both FGF-2 and NRG-13-adrenegic receptor §-AR) actiation in vivo,in neonatal
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rats, decreases cardiomyocyte mitosis and detesi p70 leads to maturation of fetal gans prior to birth, but a
ribosomal protein S6 kinase, which is downstream afomprehensie sudy in sheep fetuses identified cortisol as a
PI3K/Akt. 41 potent cardiomyocyte mitogén. In contrast, a similar
In addition to the actition of mitotic signalling intrafetal infusion of cortisol has been reported to decrease
pathways, proliferation can be regulated bytakinetic DNA content in the left gntricle® and adrenalectomized
mechanisms. Embryonicmice with cardiac specific sheep fetusesxhibit greater cardiomyocyte proliferation,
deletion of Survivin and neonatal rats with Survivin smalhus suggesting cortisol inhibits progression through the
interfering RN\ (siRNA) knockdown hse fewer cell gycle3® The signalling pathay that links cortisol to
cardiomyogtes, due to a reduction in proliferatith. proliferation of cardiomyocytes, howe, remains unclear.
Survivin is a ley regulator of mitosis and ytokinesis In the late gestation sheep fetus, cardiomtec
because it is a component of the chromosomal passengeliferation is inhibited in the presence of reduced cardiac
comple, essential for appropriate chromosomal separati@ystolic loacf® thyroid hormone ('g)61 and atrial natriuretic
and cytokinesis (vewed by Lenset al, 2006%). It is peptide (ANP$? (revieved by Thornhbrg et al, 2011,
currently unknown if IUGR influences thegrdation of Specifically T, increases the proteinadance of the CDK
components of the chromosomal passenger complex. inhibitor p218ip1, while simultaneously decreasing the
Recent studies by Heallest al. demonstrated that protein abundance of/clin D151 ANP does not inhibit the
the canonical Wnt signalling patlyy which is an essential basal rate of proliferation, lever, Ang-ll stimulated
regulator of pre-cardiac mesoderm cell proliferation angdroliferation is inhibited due to reduced Akt and ERK
differentiation into cardiomyagtes, promotes activity? (Figure 1).
cardiomyogte proliferation®* Through the use of _ _
conditional knockouts oSalvto selectiely inhibit Hippo APOptosis of cardiomyocytes
signalling in mice, Haelleret al. demonstrated that Hippo

signalling is essential for the appropriate control oéia/elopment (reiewed by Poelmann & Gittenbger-de

cardiomyogte proliferation and heart size; due to itsGroot 2008° and Porrelloet al, 2008 and is tightly
inhibition of transcription factors that are promoted by th?egula,ted and controlled by tw main pathways: the
Wnt/B-catenin - signalling ~ pathay. ~ Ablating - Hippo intrinsic and extrinsic pathways, which regulate apoptosis

signalling .Ied to embryos W.ith Iarger hgarts C0”“""““91r0ugh mitochondrial activity and death receptors,
more cardiomyogtes. Interestinglythis cardiomgay was respectiely.5 Upon release of cytochrome C from the

specifically due to exaggerated cardiomgtecproliferation mitochondria or ligtion of the death receptors (DRS),

and Yﬂs ﬂOt assg)_mated W't.rt] altelrled fl!::)robt!ast-, ‘:’arzOOtn‘nitiator' caspases such as procaspase 9 and procaspase 8,
muscle cell or cardiac progentior Cell profiteration, arsW o ¢jeged to their actie form (Figure 2). Activation of

obs;r‘ed n tthe I.eft ?.nd frlght dg;trlclet,hdestpfl.t;dthese ‘initiator’ caspases results in the ckege and actiation of
cardiomyocytes originating from difierent heart nes. ‘effector/executioner’ caspasese. 3, 6 and 7), which

Pahological conditions in fetal life that result in fetalCause the biochemical and morphological changes

growth restriction occur predominantly in late gestaﬂt?on. associated with apoptotic cell de&#7 The apoptotic

and often lead to changes not only in the endocr'rbeathmay is regulated at variousvids by members of the

ervironment, it also in both preload and afterloadg family of proteins, consisting of both pro-apoptotic
Therefore, the écts of these changes on cardionyec (Bad, Bax, Bak, tBid, Bim and Bmt) and anti-apoptotic

pro(l;feranont haet tlte_en S.tUd'?d | Itn Shfetp’ Whe.re(BcI—Z and Bcl-X) elements®® Anti-apoptotic proteins of
cardiomyogte maturation bgins in late gestation as in he Bcl-2 family act at the mitochondrialv to block the

humans, unlig postnatal life such as rats, mice an : ;
. ' . ' . elease of cytochrome C, whereas pro-apoptotic proteins
chickens (Table 1). The endocrindezfts hae been studied inhibit the action of the anti-apoptotic protef§sThe

in Zheﬁp n:rc])dtelfhof IU.GR @?Ned by I\_/Iorrilson, 20@ 1 cleavage and actiation of anti-apoptotic Bid by caspase 8
and shw/ that there 1s a decrease In plasma ““allows for the atrinsic pathway to initiate the intrinsic

glucosé’ concentrations and an increase in plasm itochondrial dependent) anontosis patha
cortisol?” noradrenalin® and adrenalirfé concentrations (?n P ) apop b Y-

) . ; : In the rat heart, there isewy little cardiomyogte
in late gestation. Different models of IUGR in sheep Cau%ﬁ)optosis either prenatally (1.4-Z865° or at 21 days
no chang® or an increas®-°2in mean arterial pressure.

n lat tation. | q cardi tolic TH5H postnatal life’! However, in the first day of postnatal life,
n late gestation, Increased cardiac systolic _there is considerable apopto&isespecially in the right
and a range of hormonal and growth factors includi

. . tricle, which undergoesceensive remodelling due to the
IGF-140 and angiotensin Il (Ang-I¥ have been shown to g g

stimulate proliferation of mononucleated cardiomyes abrupt changes in blood o patterns and circulatory
. ist hortly after birth ¢iewed by Smolich, 199%).
(reviewed by Thornhrg et al, 2011*Y). Ang-Il acts through resistance shortly after birth Wiewed by Smolic %)

. ) ; It is important to note that in the rat heart, this period of
55 ’
the Ras/ERK pathway in cardiomytes’™ but evidence cardiac remodelling and apoptosis corresponds to a period

frotr'natm?#sig}r?/z%om?hSte;; cells suggests it may al?\ﬂwere the majority of cardiomygtes are mononucleated
actvale the pathway. and still capable of proliferatidg (Table 1). In the sheep,

.SIUd'eS n shgep fetuse; provide conf_hctmg resul{ﬁis remodelling and apoptosis occurs at a time when the
regarding the rgulation of cardiomyocyte proliferation by majority of cardiomyocytes are terminally feifentiated’*
cortisol. Increased cortisol concentrations in late gestation

Apoptosis is critical for appropriate cardascular
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Figure 2. Apoptosisis critical for cardiac development. It can be mediated by the mitochondrial dependent intrinsic path-
way and the deatteceptor mediated extrinsic pathwaRs: death eceptos, FADD: Fas-Associated protein with Death
Domain.

Apoptosis in the late gestation sheep heart is also mininmalltinucleated, are not well understoo&tudies in rats
(<0.05% of cardiomyoges)’® At birth, the majority of demonstrate that during binucleation there is a simultaneous
human cardiomyodes are mononucleatéd (Table 1), downreyulation of cyclins and CDKs associated with/$s
however, they lose the ability to proliferate shortly afterand G/M transition and an upregulation of cyclins and
birth. It is currently unclear if the remodelling of the rightCDKs associated with pphase-‘?0 Recent studies by Di
ventricle occurs when human cardiomyocytes are stibtefanoet al. demonstrate that simultaneous knockdf

capable of proliferating. CDK inhibitors p2£P1, p27€iP1. and p5%P?2 by siRNAs in

) ) ] ) o cultured neonatal and adult rat cardiomytes can result in
Multinucleation and terminal differentiation of entry to S-phase and a proportion of cardiorgjes
cardiomyocytes completing karyokinesi& Transgenic mouse studiesvea

h demonstrated thatverexpression of cyclin D1 andyclin
' ; ; i182-83 ;
mononucleated cardiomygtes cease proliferating due 101 induce multinucleatioff, **but it has been suggested by

the absence of karyokinesis and/oyto&inesis. If a Naqvi et al’ that terminal o_lilferentiation may not be
cardiomyogte undegoes karyokinesis in the absence 0§;|mply due to altered expression of genes that regulate the
cytokinesis, it becomes a multinucleated (predominantﬁ/eII cycle. .

binucleated) cardiomygte and is terminally diérentiated R(_acent studies by I?orrelkl gl.demonstrate that cell

10, 77 (Table 1). Unlile umans, mice and rats are born withCy_CIe withdraval and multinucleation may be regulated by

. \85 ; :
hearts comprised of mononucleated cardiongtexcthat do microRNAs (miRs)™ By comparing the expression of

not undergo binucleation or cease proliferating until aftép'lgs Ir;t cardg)omygcytes ffrom m|cethbefc;re (1_t_day o]t atghe)
birth.73: 78 Consequentlyinjuries to the neonatal mouse?"® arter ( ays of age) the transition o €

heart before 7 days of age can result in cardiogtgoc carg!omyoq:e potol from prol_l;fer{;aftée nuthnut:lle:ite(;j
regeneration due to the proliferation of xisting cardiomyogtes 1o non-prolier nmultinucieate

mononucleated cardiomygies™ To date the signals that cardiomyogtes, Porrelloet al. identified the miR-15

prevent mononucleated cardiomyges from undegoing famlly mgmbe{ r:;lRl;thE;], as the mosttupregulated_ miR
karyokinesis to become polyploid, or cytokinesis to becorrfgmng IS period. Furthermore, prematurerexpression

In late gestation and shortly after birt
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Table 1. Timing of multinucleation and proportion of mononucleated and multinucleated cardiomyocytes in adult life in a
range of species.

Species  Length of  Timing of binucleation Mononucleated Binucleated Cardiomyocytes
gestation/  (days) cardiomyocytes (%) cardiomyocytes (%) with >2
incubation nuclei (n)
(days) %)

Before birth/  After birth/ At birth/ Adult At birth Adult Adult
hatching hatching hatching

Human 280 Begins by unknown  [P07° 74 + 8% 8.8 +5.376 25.5 + 8% [0.5 (3n and

22477 577 4n)*
54-63%

Rat 21 n/a 4-1273 > 9573 10-14% 29+187  85-89% 1-5% (3n and

4n)%

Mouse 19 n/a 3-10% (D8 < 8.5% 1.5+03%  91.5% unknown

Chicken 21 n/a Beginsby 100”7 43.6+4.6 0”7 442+2.8 [11.5

157 at 42 days”’ at 42 days”  at 42 days”’
Sheep  145-150  Begins Ends (W4  Between 16.8 8+ 15at4-6 Between78.9 92.0+1.5at unknown
1007°-11074 +2.6and weeks4 +2.2and 4-6 weeks’
21.1£2.274 83.2 £ 2.67

Pigs 114 unknown unknown unknown b unknown m2 (B3 (3n-16n)

at 6 mo?® at 6 mo” at 6 mo?®

of miR-195 in embrgonic hearts resulted in smaller heartsardiomyogtes hae a Imited capacity to proliferate,
that had a reduced number of cells in the cell cycle andadiilst cardiomyocytes from species such as newts and
greater percentage of multinucleated cardiomyocytes zgbrafish retain the ability to replicate BNnd divide 2092
postnatal day 1, suggesting premature cell cycle arreshe physiological benefit of multinucleated cardionytes
Furthermore, postnatal knockdown of the miR-aBnify is uncertain, but it has been proposed to be an adapti
resulted in a greater number of mitotic cardionyyes at response in cells with a high metabolic demand, such as
12 days of age, heever, this did not ivolve an hcrease in  skeletal muscle cells, where the capacity to generate twice
the number of cardiomyocytes undergoing cytokinesis aride ribonucleic acid (RNA) for protein synthesis might be
suggests that the miR-15 family is not alone irvgméing advantageou¥ Studies in sheep, where binucleation
cardiomyocyte proliferation in postnatal hearts. begins prenatallyas it cdbes in humans, demonstrate that the
Despite the absence of proliferation in the adult heamaximum C&*-activated force and adult cardiac troponin |
under basal conditior§, studies of human hearts afterand C protein expression increase with the decrease in the
myocardial in&rction suggest that a small proportion opercentage of mononucleated cardiomyocytes in late
cardiomyogtes are capable of ykinesis®” albeit gestatior’® The timing of binucleation can be accelerated
insufficient to maintain/repair heart function. Similarlg  or delayed by alterations to the fetal environment, as
vitro stimulation of adult rat cardiomyocytes with NRG-1discussed bela
causes DM synthesis folleved by completion of ) S
cytokinesis in approximately 0.6% of pieusly quiescent Qardlomyocyte turnover and polyploidization in postnatal
mononucleated cardiomygies3® Engel et al®® hae life
identified the signalling molecule, p38 mitogen-eatad
protein (MAP) kinase (p38), as an inhibitor of adul
cardiomyogte o/tokinesis. Inhibitingp38 in vitro results
in an approximate 3.8-fold increase in adul

cardiomyogtes undergoing cytokinesis after stimulationAI g . ;
i . . though it is still accepted that adult cardiomytss,
with FGF-1 compared to FGF-1 stimulation alGhe38 unless Eperimentally stimulated, do not unger

has also been implicated as a potentiajuketor of okinesis!* studies carried out in geral laboratories

) C
cytokenetic genes such as components of the chromosorﬂ)é:],e identified the presence of human cardiac stem cells

passenger comptg/Aurora B, INCENP and Survivin) and (hCSCs) that hse the ability to generate me
i 9 "
actin assembly genes such as Anffri”In addition, Engel cardiomyocyte$€2-191 Currently the contribution of hCSCs

89 ) o o . o
zt 6."' have ;? ent'ﬂe% 'IAm"tlc?k'r ecrwtmer;)t gnd Iocalliatllc;n to the replacement and tuwep of cardiomyogtes after
uring anaphase and latgtaxinesis as being essential for rth is contentious. Some studiesvbasiggested that

: T . bj
the completion of ytokinesis and its absence as a cause %EO% of cardiomyocytes are replaced in a normal life

blnuclﬁathn. . ‘ i spant?!® whereas others suggest that the entire
is not clear wh mature mammalian cardiomyogte pool is replaced 11 to 15 times in the life of

It appears that terminal @#frentiation of
tcardiomyog/tes is complete soon after birth in humans and
therefore it has been proposed that the human heart lacks
he capacity to generate more cardiomyocytes postnatally
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Figure 3. The effect of PaO, on fetal growth. Both fetal body weight (A% = 0.553,P < 0.001,y = 0.21x - 0.05) and
heart weight (By? = 0.501,P < 0.001,y = 1.45x + 1.20) ae oorrelated with mean gestationa®, in the late gstation
sheep fetus (137-145 days; teftb0 days). Open dites ae ntrol fetuses, filled circles arfetuses exposed to placental
insufficiency.

men and women respeafly, with the maximum age of Theeffect of IUGR in species where cardiomyocyte
cardiomyogtes being 23 yeaf$? Studies in mice maturation occursafter birth

demonstrate that the annual nemkrate of cardiomyoges ) o )
is approximately 1.19%19% which is similar to an Maternal protein restriction during geang results

estimation made from carbon dating studies in hurits, In reduced birth weight, heart weight and number of
Regardless of the actual rate of cardiomyocyte twenp Cardiomyogtes at birth in ratsl® Lim and colleagues
hCSCs are not capable of replacing enough of t@aended_matemal protein restrlct_|on durmggl_imnty to_ _
cardiomyogtes lost due to aging and injurg.g. due to the lactation period, because card|omyoc_:yte bmut_:leatlon in
myocardial infarction) to maintain cardiac function and@ts occurs postnatafiy’ but found no diference in the
prevent heart &ilure. Therefore, the impact of restrictions tg0t@l number of cardiomygtes in the offspring compared

fetal substrate supply on cardiomyocyte emdent at birth With controls at four weeks of agé: These studies are
has implications for the indiduals’ vulnerability to important because thesuggest the presence of a critical
cardiosascular disease in adult life. window during cardiomyogte maturation when

Despite the inability of adult cardiomyocytes tocardiomyogte endowment can be rescued. In ratsy teo

undego cell division, thg do retain the ability to undgo ~Suggest that matching the prenatal and postnatal
DNA replication. In the human heart, 90% ofévironment until cardiomyode maturation is complete,

cardiomyogte nuclei are diploid (2c) shortly after birth, &y bellzbeneficial, but the opposite is true for nephron
whereas the majority of adult cardiomyocyte nuclei ardumber:-* Moreover, these studies demonstrate that heart

tetraploid (4c)i%* Ploidy is positvely related to heart Weight and cardiomyocyte number are poslyi

weigh%1% and increases further in response telated: _ _ _ _
injury.196-197 Studies in sheep, where the majority of Mate_rnal hy_poxua_\ during late gestation results in
binucleation and terminal differentiation occurs prenatallyeduced birth weight in rats and offspring whovéhea
identify that premature lambs ea geater percentage of 9réater susceptibility to ischemia re_pgrfu3|_on (I/R) injury in
tetraploid mononucleated cardiomytes compared with adulthood:**1% Furthermore, I/R injury in these adult
term controls at tav months of agd% Studies in rats, where OffSPring results in a Iger infarct and diminished post-
gastroenteritis was induced during the period ofischemic receery of left ventricular function when

binucleation and terminal differentiation (4-12d postnatalfompared to controfs**:°which is accompanied by an
demonstrated that polyploidization can also be incre#8ed.Ncrease 1n_ caspase 3 amy and cardiomyogte
The regulaton and adwtage/disacntage  of apoptosis: Th_|s vulnera_b|I|ty may _be due, in part, to
polyploidization is not well understood. Cardiomytes decreased capillary densit§ and cardiac remodelling that
polyploidization is suggested to be proteeti ayanst includes increased collagen | and Il and fibrillar thickness
hypoxia induced apoptosis,ub maladaptie for aerobic and density!® Interestingly prior to I/R injury, these rats
metabolisni® Consequentlyaterations to cardiomygte Nae he same body weight, heart weight and lefttvicle

ploidy during deelopment may hee implications for adult weight compared to controlsyttheir cardiomyocytes kia
heart health. a larger cross sectional aré. These data suggest that rats,
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whose mothers werexgosed to hypoxia during mgeang, model of chronic placental restriction, fetal body weight
have fewer cardiomyogtes and a heart weight that has beeand heart weight are correlated with fetal arterial, PO
maintained by greater ypertroply of the remaining (PaQ) across late gestation, such that the greater theede
cardiomyogtes. This premise is supported by studies of the&f hypoxemia, the greater the fetal growth restriction and
hypertrophic heart rat (HHR) model, which vé®ps reduction in heart growth (Figure 3). There iswkeer, no
cardiac lpertroply in the absence of increased bloodchange in heart weight relati © body weight in IUGR
pressure, by 2 months of ajé At 2 days of age, these ratscompared to control fetusé&
have gnaller hearts containing smaller and wés Studies using tw different sheep models of IUGR,
cardiomyogtes, which hae become prematurely induced by placental indidieng, have investigated
binucleated and xited the cell gcle!'® Unlike maternal cardiomyogte deelopment. One involves sugical
protein restriction studies, IUGR caused by materna¢moval of endometrial caruncles in the non-grant eve
hypoxia can disrupt the posié relationship between heart to reduce placental size (placental restriction, BRjhile
weight and cardiomyocyte number in the postnatal R&art. the other imolves embolization of the uterine artery of the

Fetuses of dams exposed to hypoxiaehicreased pregnant horn to reduce uteroplacental bloodvfia late
cardiomyogte apoptosis and premature binucleation angestation (UPEJ23124 |n  both models, placental
exit from the cell gcle in the heart in late gestati®hOne insufficieny caused a delay in the transition of
would presume therefore that maternalpbxia would mononucleated cardiomyytes to binucleated
result in decreased numbers of cardiomyocytesfspofig cardiomyogtes (Figure 4). This delay in maturation is in
at birth. In the rat, based on the obser/catch up’ of direct conflict with the results from maternalploxia
cardiomyogte endowment in &pring exposed to maternal studies in rats, which demonstrated an acceleration of
protein restrictiot1it is not knavn if a proposed deficit in binucleatiorf® reflecting the importance of cardiomyoe
cardiomyogtes at birth will be corrected after birth, beforematuration timing differences between species.
cardiomyogtes hae cmmpleted terminal diérentiation’3
Similarly, it is not knowvn if the proposed deficit in ® Control
cardiomyogte number in the heart of postnatafspfing 100 - A UPE

L . ¢ PR

exposed to maternalypoxia is a direct consequence of
fewer cardiomyocytes at birth or if it is due to greater
apoptosis in the heart of the IUGRfsmfring compared to
control ofspring post weaning. Furthermore, it has yet to
be answered if IUGR, in an animal model where
binucleation occurs prenatgligr in fact in humans, results
in a deficit in the number of cardiomydes before or after
birth.
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Percent Mononucleated

The effect of IUGR in species where cardiomyocyte
maturation occur s before birth 0

150 1;2 154 156 1;8 140
To date, there hae keen no studies published Gestational Age (d)
identifying the efect of IUGR on cardiomyote

endwment in a species where binucleation OFigyre 4. Regardiess of the model of IUGR employed,
cardiomyogtes begins before birth. A study in sheep, 8GR in sheep results in an increased percentage of
species where cardiomyocyte maturation occurs prenataliyononucleated cardiomyocytes across late gestation. 122124
demonstrates that na.lturally occurrin@riation in _p|rth Contol, blue circles; uteroplacental embolization
weight changes cardiomygte endowment. Specifically (UPE) 123124 red triangles; placental restriction (PRR2
birth weight and body and heart weight at nine weeks @dq giamonds.
age were positely correlated with the number of left
ventricular cardiomyogtes!!® These data supporvidence ) )
from maternal protein restriction studies in rats, which A reduction in fetal substrate supply changes
shav heart weight is posiEly related to total cardiomyogte growth patterns, but these changes are
cardiomyocyte numbéfo-111 dependent on the timing, duration andvesity of the
The use of a sheep model of chronic feigidxemia, Placental insificiency. For example, placental indidiency
caused by fetal anemia, has identified alterations in fefd UPE for up to 20 days is associated with a decrease in
heart growth and poor card@scular outcomes in the adultthe — percentage  of ~mononucleated  cardiorgigs
sheep20121 Sheep models of placental iniciengy result undegoing proliferation;”® however this is not obseed in
in chronic fetal poxemia, lypoglycemia, PR, where placental indidiency has occurred wer at least
hypercortisolemia, hv birth weight and reduced heartthe last half of gestatioft? Interestingly the reverse is true
weight in late gestation, which are endocrine andvgro for cardiomyogte size, where PR results in a decrease in

changes that also occur in human gmancies of the absolute size of cardiomyses;?” with no change in
IUGR 122-124stydies in our laboratory te siown that in a  absolute cardiomyocyte size observed after UBPespite
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a reduction in absolute cardiomyocyte size in PR fetusesyrvival113-114.129-1303n( typertrophy1412213imay each be
the size of each cardiomyocyte isgar in relation to heart affected by a reduced substrate supplytera

weight when compared to controls. Studies in shee@ )

demonstrate that the size of cardiomyocytes welatiheart ¢oncluding remarks

weight decreasgs .With gesta_tion in the normallnglro. The data discussed in thisview suggest that IUGR
fetus, but that this is delayed in the IUGR fetus suggestnﬂgduc

v irfedd )
that there may be ¥eer cardiomyocytes in the heart of theI e ed by reduced substrate supply irfetéint species

. ds to alterations in cardiomyate dezelopment and may
IUGR fetu_s (F|g_ure 5)'. Th_e use of bqth sheep models Féer to reduced cardiomyocyte endowment. It is notvkno
placental insufciency highlights hav differences in the h

d d timi f fotal insult It infafiént owever, if the obsergd changes to cardiomygde
egree and timing of fetal Insulls can result nferen development are all induced by a common mechanism
cardiomyocyte phenotypes.

evcked by auboptimal substrate supplyor whether
deficiencies in specific substrates, such as protein or

6 oxygen, induce specific consequences to cardiontgsc
a * This is important for the understanding of the mechanisms
5 T that regulate cardiomyocyte endowment. It is also not,clear
if a window of time exists when cardiomyocyte emduent
4 can be rescued. Studies in rats suggest that the early
_%_ postnatal period may represent such a windwit it is not

clear if this is due to the remodelling of the heart that
occurs during postnatal changes in the circulatory system or
due to the postnatal timing of cardiomyte terminal
differentiation in rats. It is clear that further studies are
required to address these critical issues and to determine
whether or not intervention strategies areelljkto be
beneficial in restoring cardiomyocyte endowment.

Length of Binucleated Cardiomyocytes
Relative to Heart Weight (nm/g)

119-126 129-136 139-146

Funding
Gestational age (d)

This work was funded by NHMRC Project Grants
Figure 5. The effect of placental restriction (PR) on car- (456421 (JLM, GP) and 456418 (ICM, JLM)). JLMas/
diomyocyte size. In the normally grown sheep fetus (operfUPported by fellwships from the Heart dtindation

bars) the length of binucleated cardiomyocytes relative {¢-R10A4988), NHMRC (Biomedical OB 511341) and
heart weight decreases with ieasing gestational ge, SOUth Australian Cardi@scular Research Neosk

however this does not occur in the PR fetus (solid)ar (CR10A4988). DAB vas supported by a Senior Research

sud that thee is an hcrease in the relative length of binu- Fellowship from the National Health and Medical Research

cleated cardiomyocytes in the PR fetus compared to th@uncil (349405).

normally grown fetus in lateegtation?>122Different super

scripts €.g.a, b, ¢) denote a significant fdéifence between

gestational aes in the normally grown fetus. * denotes a1, Barler DJ, Whter PD, Osmond C, Margetts B,

significant diference between normally grown fetuses and Simmonds SJ.Weight in infang and death from

PR fetuses at 139-146 days gestati®r 0.05). ischaemic heart diseageancet1989;2: 577-80.

2. Rall CHD, Osmond C, Bagk DJR Clark PMS, Hales
CN, Stirling Y, Meade TW Fetal and infant gneth
and cardigascular risk &ctors in women. BMJ

The adaptation of the fetal heart to a period of  1995;310:428-32. _
reduced substrate supply and decreased bodytigroas 3- Frankl S, Ewood F Swveetnam PYarnell J, Smith GD.
critical consequences for heart health in later life because at ~ Birthweight, body-mass inatein middle age, and
birth, the human heart contains most of the cardioytgsc incident coronary heart diseadeancet1996; 348:
it will have for life.1%-13 Consequentlyin cases where the 1478-80. _
endavment of cardiomyoges is reduced, the remaining4- Forsen T Eriksson JG, Tuomilehto J, Teramo K,
cells will be required to increase in size in order to increase ~ Osmond C, Bamr DJ. Mothers weight in
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