Pharmacological characterization of individual subtypes of $\alpha 4\beta 3\delta$ GABA_A receptor, include the novel description of $\beta 3\delta$ GABA_A receptor subtype

H.J. Lee, N.L. Absalom, J. Hanrahan and M. Collins, Faculty of Pharmacy, Department of Pharmacology, The University of Sydney, NSW 2006, Australia.

 γ -Aminobutric acid (GABA) is the main inhibitory neurotransmitters in the brain. It mediates its effect in part through activation of γ -aminobutyric acid type A receptors (GABA_AR), pentameric receptors that open a chloride-selective channel upon binding of GABA. Individual GABA_ARs subunits are encoded by a number of individual genes, including α (1-6), β (1-4), γ , δ , π , ϵ and ρ . These subunits form a limited number of subtypes that differ in their pharmacology, sensitivity to GABA, distribution in the brain and physiological roles. Our focus is on the $\alpha 4\beta 3\delta$ GABA_AR, which is located extrasynaptically and thought to contribute to tonic inhibition, activated by low concentrations of either ambient GABA, or spillover from synaptic transmission.

The two-electrode voltage clamp technique has long been used to study the function of GABA_ARs and as a convenient method to identify putative pharmaceuticals. When expressing multimeric receptors *in vitro*, the analysis of electrophysiological recordings can be complicated by the presence of heterogeneous receptor populations with different pharmacological properties. In this study, we injected different combinations of $\alpha 4$, $\beta 3$ and δ cRNA into *Xenopus laevis* oocytes and performed concentration-response curves to GABA through the two-electrode voltage clamp technique, with the cells held at -60mV. We also characterized the effects of several known pharmacological agents of extrasynaptic GABA_ARs, and characterized putative binding-site mutations previously identified.

We report that there are four possible receptor subtypes that we can identify to be expressed in Xenopus oocytes when $\alpha 4$, $\beta 3$ and δ cRNA are injected: $\beta 3$ homomeric; $\alpha 4\beta 3$; $\beta 3\delta$ and $\alpha 4\beta 3\delta$. The $\beta 3$ -homomeric receptor displays constitutive activity that is inhibited by zinc but exhibits no significant response to GABA (up to 1mM). GABA elicited chloride-currents at oocytes injected with $\alpha 4$ and $\beta 3$, or $\beta 3$ and δ alone, with an EC₅₀ of 25 μ M and 26 μ M for the resultant α 4 β 3 and β 3 δ subtypes respectively. Despite exhibiting similar pharmacological responses to GABA, the agent DS2 is an agonist of $\beta 3\delta$, but not $\alpha 4\beta 3$ receptors. The pharmacology of $\beta 3\delta$ receptor was further characterized in this study, and we identified that THIP and DS2 activate $\beta 3\delta$ receptors, whereas zinc and gabazine inhibit GABA-elicited currents. When attempting to express the $\alpha 4\beta 3\delta$ GABA_AR *in vitro*, all these subtypes may contribute to the resultant GABA-elicited concentration response curve, complicating the analysis of the functional properties of $\alpha 4\beta 3\delta$. It has previously been demonstrated that GABA-binding site is located within the interface of $\alpha 4$ (complementary/-) and $\beta 3$ (principle/+) subunits in the $\alpha 4\beta 3\delta$ extrasynaptic GABA_ARs. However, GABA clearly activates $\beta 3\delta$ receptors that lack an α 4 subunit, and we hypothesized there is a novel GABA-binding site at the interface of β 3 and δ subunits. Three critical residues, which were shown to be vital in $\alpha 4\beta 3\delta$ receptor, were tested in $\beta 3\delta$ receptors. $\beta 3_{Y205C}$ shifts the GABA concentration-response curve by 1000-fold. δ_{F72C} and δ_{R218C} shifted only by 2-fold and 4-fold respectively indicating that $\beta 3_{Y205C}$ may be directly involved in binding of GABA. In consideration of the β 3-homomeric receptor and β 3 δ receptor above, δ subunit may be involved either in allosteric or gating mechanisms.

We have identified the potential for a mixed-population of receptor subtypes to be expressed in *Xenopus* oocytes injected with $\alpha 4$, $\beta 3$ and δ . We manipulated various parameters of the expression system, including mRNA poly-adenylation and the relative subunit ratios to shift the resultant GABA-concentration response curve. The identification of a selective pharmacological agent for $\beta 3\delta$ receptors would enable us to infer the relative subtype contributions to the resultant $\alpha 4\beta 3\delta$ GABA-concentration response curve. This knowledge could be used to identify any role of $\beta 3\delta$ receptors *in vivo*, enabling us to understand actions of pharmacological agents that act on $\alpha 4\beta 3\delta$ receptors. This may lead to an increased understanding of the physiological role of these GABA_AR subtypes.