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Summary

1. Epidemiological studies indicate that poor growth
before birth is associated with left ventricular hypertrophy
and an increased risk of death from heart disease later in
life.

2. In fetal life, the insulin-like growth factor (IGF)
system has been implicated in physiological growth of the
heart, while in postnatal life IGFs can be involved in both
physiological and pathological cardiac hypertrophy.

3. A reduction in substrate supply in fetal life,
resulting in chronic hypoxaemia and intrauterine growth
restriction, results in increased cardiac IGF-1R, IGF-2 and
IGF-2R gene expression; and there is also evidence for a
role of the IGF-2R in the ensuing cardiac hypertrophy.

4. The persistent high level of cardiac IGF-2R gene
expression from fetal to postnatal life may be due to
epigenetic changes in key cardiac hypertrophy regulatory
pathways.

Left ventricular hypertrophy and mortality

An increase in heart mass is known as cardiac
hypertrophy and can be classified as either physiological,
i.e. when cardiac enlargement is compensatory and
reversible, or pathological,i.e. when cardiac enlargement is
decompensatory and irreversible (see reviews Bernandoet
al., 2010;1 Adamset al., 1998;2 Lorell & Carabello, 2000;3

Knöll et al., 20114). The main contributor to pathological
hypertrophy is an increase in left ventricular weight. Left
ventricular hypertrophy (LVH) is initiated as a
physiological adaptation to compensate for an increased
cardiac workload as a result of either pressure or volume
overload3 or in response to normal growth signalsin utero.
If maintained or excessive, LVH becomes pathological, and
is associated with a significant increase in morbidity and
mortality. For example, the Framingham Heart Study
showed that patients with ST-T repolarization
abnormalities, suggestive of left ventricular strain, were six
times more vulnerable to cardiac death over a 20 year
follow up period.5 In addition, data from the Bronx
Longitudinal Aging Study also suggested that the presence

* indicates equal first author

of LVH (based on electrocardiographic definition) is an
independent predictor of adverse cardiovascular outcomes.6

LVH has therefore been recognized as the strongest risk
factor for cardiovascular disease.5,7

A number of physiological, environmental and life
style factors have been linked with LVH. The prevalence of
LVH is age dependent with only 6% of individuals
diagnosed before 30 years and up to 43% of individuals >70
years diagnosed with LVH.8,9 Women with LVH are more
likely to have neg ative cardiovascular outcomes than men,
when adjusted for age.10 LVH is associated with a number
of conditions such as obesity,11 diabetes and myocardial
infarction.12 Hypertension is a risk factor for LVH; where a
small rise in blood pressure is associated with an increased
risk of LVH13 and patients with LVH are 3 times more
likely to have hypertension.8 Another significant risk factor
for LVH is reduced growth before birth14-16 although the
mechanisms underlying this relationship are complex and
poorly understood.

Intrauterine growth restriction and mortality: cardiac
hypertrophy

Intrauterine growth restriction (IUGR) is associated
with cardiac hypertrophy in infants14,17 and adults,18-20 and
results in an elevated risk of cardiovascular disease
independent of blood pressure, smoking and cholesterol
concentrations.6,7 IUGR is defined clinically as having a
birth weight below the 10th centile for gestational age21-24

and can be caused by a range of factors including maternal
environment,24,25 maternal undernutrition,26,27 placental
insufficiency28 or fetal gene defects, including
chromosomal abnormalities; all of which can result in the
fetus failing to achieve its genetic growth potential and
exhibit asymmetric growth.22,28-30 Epidemiological studies
have demonstrated that IUGR fetuses are at increased risk
of cardiovascular disease in later life; with birth weight31,32,
maternal body size and placental shape and size33

determining the subsequent risk of cardiovascular
disease.32,34-39

IUGR fetuses can be hypoxaemic, hypercapnic,
hyperlacticaemic, acidotic,40 hypoglycaemic,41

hypertriglyceridaemic42 and have increased plasma
concentrations of cortisol and noradrenaline.43 These
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metabolic and endocrine changes can alter early cardiac
growth and lead to a vulnerability to cardiac
hypertrophy.44-48 To date, the independent and relative
impact of each insult has not been determined. We18,49 and
others50-52 have shown that in animal models of IUGR,
absolute heart weight is reduced compared to normally
grown fetuses. In late gestation, IUGR sheep fetuses also
have a reduction in cardiomyocyte proliferation50 and a
higher percentage of mononucleated cardiomyocytes,49-51

indicating a delay in cardiomyocyte binucleation and
maturation. Furthermore,IUGR due to placental growth
restriction results in longer binucleated cardiomyocytes
relative to heart weight18,49 whilst maintaining normal
arterial blood pressure.53-55 It is, therefore, unlikely that the
increase in cardiomyocyte size in the placentally restricted
fetuses is due to changes in afterload.55,56 The IUGR sheep
fetus is more dependent on the renin-angiotensin system54

and the sympathetic nervous system (SNS),53 but not
endothelial nitric oxide,57 for the maintenance of basal
arterial blood pressure. These studies suggest that there are
a range of neuroendocrine adaptations in response to a
decrease in substrate supply in the IUGR fetus, which
maintain arterial blood pressure and this may impact on the
growth and functional development of the heart.

Altered cardiac growth is also seen in postnatal life.
The low birth weight (LBW) lamb, defined as a having a
birth weight two standard deviations below the mean of a
large cohort of normally grown fetuses,18,58 which was
induced either by placental restriction or spontaneous
growth restriction, has a relatively larger heart19 and left
ventricular18 weight (heart or left ventricle weight : body
weight) compared to the average birth weight (ABW) lamb.
Along with changes to cardiomyocyte growth, IUGR, due
to maternal protein restriction in rats reduces the number of
cardiomyocytes at birth.52 Interestingly, in a genetic rat
model of adult cardiac hypertrophy without hypertension,
pups at 2 days of age also have fewer cardiomyocytes.47

Since IUGR can be caused by restriction of oxygen
and/or nutrients, it is currently unclear if there is a common
mechanism linking IUGR (by any means) to negative
cardiac outcomes in adulthood, or if there are several
mechanisms leading to a similar outcome.IUGR results in
a range of neuroendocrine adaptations that may also lead to
changes in cardiac growth.55,59-65Insulin-like growth factors
(IGFs) are critical regulators of placental and fetal
growth.66,67 The IGF signalling pathway is a nutritionally
sensitive pathway and its activation is altered in IUGR.68,69

IGFs also have an important role in cardiac growth.

The role of IGF signalling in cardiac growth in late
gestation

IGFs play an important role in cardiac growth in fetal
life and are associated with both hyperplasic and
hypertrophic cardiomyocyte growth. The expression of
IGF-1, IGF-2, IGF-1 receptor (IGF-1R) and IGF-2R gene
transcripts in the left and right ventricles has been
confirmed at as early as 80 days gestation in the sheep
(term, 150 days).70 The amount of IGF-1 and IGF-1R gene

expression is relatively constant across late gestation.70

Many studies have shown that IGF-1 stimulates cardiac
hypertrophy in adult life.71,72 IGF-1 and IGF-2 can each
bind to the IGF-1R, which stimulates downstream
signalling pathways involved in cardiac proliferation64,73

and hypertrophy.74,75 IGF-1R downstream effectors include
phosphoinositide 3-kinase [PI3-K, (p110α)],74 protein
kinase B (Akt),76 mammalian target of rapamycin
(mTOR)77 and p70 ribosomal S6 kinase74 (for review see
Bernardoet al., 2010).1 In fetal life, the role of IGF-1 is less
clear as some studies show that IGF-1 is involved in the
proliferation of cardiomyocytes,64 while others have shown
an effect on hypertrophy.78

Cardiac gene expression of both IGF-2 and IGF-2R
decreases with increasing gestational age70 and IGF-2 can
act on both IGF-1R and IGF-2R. The downregulation of
IGF-2R, an IGF-2 clearance receptor, in late gestation is
important to allow continued cardiac growth in response to
IGF-2.79 The IGF-2R is a multifunctional receptor that has
been traditionally viewed as a clearance receptor for IGF-2
(Figure 1). The binding of IGF-2 to the IGF-2R results in
this complex being endocytosed; while the extracellular
domain of the IGF-2R binds IGF-2, the cytoplasmic tail
sequence regulates traffic to different intracellular
compartments.80,81 In the acidic conditions of the
endosome-lysosome system IGF-2 is dissociated from the
receptor and the latter can be degraded by the constituent
lysosomal hydrolases.81,82 After IGF-2 dissociation, the
IGF-2R can then be recycled back to the plasma membrane.
The IGF-2R has been thought to act primarily as a
degradative pathway to remove excess IGF-2 from the
circulation. Downregulation of the IGF-2R in late gestation
is normally important to allow continued cardiac growth in
response to IGF-2,79 resulting in increased cardiomyocyte
proliferation and reduced apoptosis.83 Embryonic mice that
inherit mutated and non-functionalIGF-2R through the
maternal germ line had greater body weight and larger
hearts due to cardiomyocyte proliferation compared to
controls and die shortly before birth or at birth84 due to
congestive heart failure.85

IUGR, IGFs and cardiac hypertrophy

In humans, IUGR term placentas have lower IGF-1,86

but higher levels of IGF-2 and IGF-1R gene expression87,88

compared to those from normal pregnancies. In sheep, there
is a decrease in IGF-1 mRNA expression in the muscle,
lungs and kidneys89 as well as decreased plasma IGF-1 and
IGF-2 concentrations in IUGR fetuses.90 There are
conflicting results in fetuses of ewes who were
undernourished from 28-78d gestation with either an
enlarged left ventricle, increased relative left ventricle
weight and increased cardiac IGF-1R and IGF-2R protein
expression27 or no change91 reported. In late gestation
(135d), fetuses of undernourished ewes had increased
cardiac IGF-1R protein expression and wall thickness.27

Interestingly, fetuses of ewes who were overnourished over
the same period of gestation had a similar increase in
plasma cortisol as observed in fetuses of undernourished
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Figure 1. IGF-2R as a clearance receptor. IGF-2R
reduces the bioavaibility of IGF-2 by internalizing IGF-2
into the endocytic system &#10112; and transporting
IGF-2 to the lysosome to be degraded &#10113;, while the
receptor, IGF-2R, is recycled back to the cell membrane
&#10114;.

ewes, but had an increased plasma IGF-1 concentrations,
greater heart weight and ventricular weight, but there was
no difference in relative heart or ventricular weight or
cardiac IGF-1R protein abundance at 78d gestation.91 In a
sheep model of fetal anemia with fetal hypoxaemia, there
was an increased relative left ventricular weight with no
change in the expression of downstream cardiac IGF-1R
signalling proteins Akt or total extracellular signal-related
kinase (ERK)1/2, however, there was a decrease in active
ERK1/2.92 Placental restriction leading to fetal
hypoglycaemia, chronic hypoxaemia and IUGR increases
the size of cardiomyocytes relative to heart weight,49-51

coupled with an increased cardiac IGF-2, IGF-1R and
IGF-2R mRNA expression at 139 days of gestation.18

IGF-2R: a clearance or an activation receptor?

In adult life, IGF-1 has been implicated in the
initiation of ventricular hypertrophy;93 and in a range ofin
vivo78 and in vitro94 experimental models, IGF-1 has been
shown to act on the IGF-1R to increase cardiomyocyte
size.47,95 Both IGF-1and IGF-2 can act on the IGF-1R to
mediate effects on cardiomyocyte growth. However, when
the IGF-1R signalling pathway is blocked in vitro, the
addition of IGF-2 still results in an increase in the size of
cardiomyocytes.95 This indicated that IGF-2 may also act
on the IGF-2R to stimulate heart cell growth and would be
consistent with the activation of a signalling pathway.

Studies in cultured H92c cardiomyoblasts show that
the IGF-2R can bind to G protein-coupled receptors with
αq subunits (Gαq: Figure 2). This is an important discovery
because Gαq pathways are associated with cardiac

remodelling,2,96 cardiac hypertrophy with a phenotype of
increased cardiomyocyte size and heart weight relative to
body weight.96-98 Gαq can reactivate embryonic genes that
are markers of pathological cardiac hypertrophy, such as
atrial natriuretic peptide (ANP),α skeletal actin and
β-myosin heavy chain.96 Specific activation of the IGF-2R
has been associated with pathological cardiac hypertrophy;
Gαq mediated phosphorylation of protein kinase C-α
(PKC-α) and Ca2+/calmodulin-dependent protein kinase II
(CaMKII), which results in the production of natriuretic
peptides.99 The IGF-2R has also been implicated in
apoptosis99,100 and myocardial extracellular matrix
remodelling via Gαq.101 IGF-2 and IGF-2R dose-
dependently correlated with the progression of pathological
hypertrophy and heart failure following abdominal aorta
ligation.102 Furthermore, it has been shown that in addition
to IGF-2 other factors such as angiotensin II (ANGII),
lipopolysaccharide, inomycin, and tumor necrosis
factor-α103 can also activate IGF-2R. Thus, there is
emerging evidence for specific signalling that is mediated
by the IGF-2R.
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Figure 2. Signalling molecules affected by IGF-2R.
IGF-2R couples with Gαq leading to &#10112; cardiac
remodelling,via imbalance in the MMP-9/TIMP-2 expres-
sion levels and increases plasminogen activator (PAs)
expression, &#10113; apoptosis,via calcineurin A path-
way, and &#10114; hypertrophyvia increased CaMKII and
PKC protein phosphorylation.

Lambs that were born LBW had an increased cardiac
IGF-2 and IGF-2R gene expression at 21 d of age compared
to ABW lambs.18 In the ABW lamb, an increase in cardiac
IGF-2R gene expression is related to a relatively smaller
left ventricle.18 In contrast there was a positive relationship
between IGF-2R protein abundance and relative left
ventricular weight in the LBW lamb, suggesting that
IGF-2R may signal a cardiac hypertrophic pathway in the
LBW lamb (Figure 3). The IUGR-induced increase in
cardiac IGF-2 and IGF-2R gene expression persists from
fetal to postnatal life and may be epigenetically
programmed to result in activation of a hypertrophic
signalling pathway rather than a clearance pathway (Figure
4).

Proceedings of the Australian Physiological Society (2012)43 73



Early origins of heart disease

Figure 3. In the normally grown average birth weight lamb (open circles) left ventricular weight relative to body weight is
inversely correlated to IGF-2R protein abundance; suggesting IGF-2R is acting to clear IGF-2. In the low birth weight
lamb, however, (filled circles) left ventricular weight relative to body weight is positively correlated to IGF-2R protein
abundance; suggesting that IGF-2R is causing hypertrophy.18
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Figure 4. Intrauterine growth restriction and cardiac
hypertrophy. IUGR, as a result of a range of fetal and
maternal insults, is associated with cardiac hypertrophy in
fetal and postnatal life. This hypertrophy is associated with
increased cardiac IGF-2 and IGF-2R gene expression,
which emerging evidence suggests may be epigenetically
regulated.

Programming cardiac IGFs

IGF-2 and IGF-2R are parentally imprinted genes.
IGF-2 is expressed from the paternal allele, andIGF-2R is
expressed from the maternal allele.104-106The imprinting at
these loci involves epigenetic modification at regions
within, or adjacent to the gene, and it is thought that these
epigenetic modifications may be vulnerable to changes in
the intrauterine environment.107-111 It has been shown that
in vitro culture of the sheep embryo results in epigenetic
modifications atIGF-2R.106 More recent studies raise the
possibility that more subtle or physiological insults, such as
IUGR, may result in epigenetic modifications of
IGF-2R.112,113The major epigenetic processes include DNA
methylation, acetylation, methylation or phosphorylation of

histones, the proteins that are required for packaging DNA
into chromatin, and small non-coding RNAs. These
epigenetic modifications act either by interfering with the
binding of transcription activators and repressors to specific
gene promoters, and/or changing the structure of chromatin
itself.114 In the heart, IUGR did not change the degree of
methylation of the 3 CTCF binding sites within the
differentially methylated region (DMR) ofIGF-2/H19 or
DMR within intron 2 of IGF-2R.18 ANGII-induced
hypertrophyin vivo and in vitro increases cardiac IGF-2R
gene expression but there is no difference in the DNA
methylation within the IGF-2R promoter compared to
controls.103 Interestingly, using inhibitors to individually
block histone acetyltransferase (HAT) and histone
deacetylase (HDAC) activity, it was demonstrated that
histone acetylation was essential for ANGII-induced
IGF-2R gene expression.103 Furthermore, chronic hypoxia
and maternal undernutrition results in epigenetic
modification of other genes including PKC-ε, ANGII
receptor 2 and peroxisomal proliferator-activated receptor-α
in the heart.115-117Additional investigations are required to
better understand the epigenetic regulation of IGF-2 and
IGF-2R in the heart.

Conclusion

IUGR is associated with LVH and an increased risk
of death from heart disease later in life. The IGFs and more
specifically the IGF-2R have been implicated in
pathological hypertrophyvia Gαq signalling. Interestingly,
the IGF-2R was traditionally viewed as a clearance
receptor, internalising IGF-2 to prevent it from activating
physiological hypertrophy through the IGF-1R signalling
pathway. IUGR is associated with an increase in IGF-2R
and its ligand IGF-2 in fetal life and this effect persists into
postnatal life. Data presented in this review suggest that the
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IGF-2R may contribute to the adverse adult cardiac
outcomes in IUGR infants. It is clear that further studies are
required to understand the regulation and programming of
the IGF-2R and to determine whether or not intervention
strategies to suppress the IGF-2R are likely to be beneficial
in improving lifelong cardiac outcomes after IUGR.
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