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Summary of LVH (based on electrocardiographic definition) is an
independent predictor of adverse cavdszular outcome$.

1. Epidemiological studies indicate that poorgtd |1 has therefore been recognized as the strongest risk
before birth is associated with lefentricular lypertrophy  t5ctor for cardivascular diseas®’

and an increased risk of death from heart disease later in 5 number of plsiological, environmental and life

life. . o style factors hee keen linked with LVH. The predence of

2. In fetal life, the insulin-lile gowth factor (IGF) |vH is age dependent with only 6% of iniuals
system has been implicated inyplological growth of the diagnosed before 30 years and up to 43% ofiddals >70
heart, while in postnatal life IGFs can bedived in both years diagnosed withMH.8 Women with LVH are more
physiological and pathological cardiac hypertyph _likely to hae regdive ardiovascular outcomes than men,

3. A reduction in substrate supply in fetal life,yhen adjusted for agé.LVH is associated with a number
resulting in chronic ypoxaemia and intrauterine @th  of conditions such as obeshy diabetes and myocardial
restriction, results in increased cardiac IGF-1R, IGF-2 anfarction2 Hypertension is a risk factor for LVH; where a
IGF-2R gene expression; and there is also evidence fog@q)| rise in blood pressure is associated with an increased
role of the IGF-2R in the ensuing cardiac hypertsoph risk of LVH3 and patients with LVH are 3 times more

4. The persistent high Vel of cardiac IGF-2R gene |ikely to hae hypertensiorf. Another significant riskactor
expression from feta_ll to po;tnatal life may be due tgy [vH is reduced growth before bifth'® although the
epigenetic changes inek ardiac lypertroply regulatory  mechanisms underlying this relationship are compied
pathways. poorly understood.

L eft ventricular hypertrophy and mortality Intrauterine growth restriction and mortality: cardiac

An increase in heart mass is ko as cardiac hypertrophy

hypertroply and can be classified as eitherypiological, Intrauterine graith restriction (IJUGR) is associated
i.e. when cardiac enlgement is compensatory anditn cardiac pertroply in infantd41” and adultd®2° and
reversible, or pathological,e. when cardiac enlargement is oqits in an elsted risk of cardivascular disease
decompelnsatory and |m5r5|bzle (see néews Bernande®t jnqependent of blood pressure, smoking and cholesterol
al., 2010} Adamset al, 1998 Lorell & Carabello, 2006; concentration§” IUGR is defined clinically as having a
Knoll et al, .2011). The main contrlbut_or to patr_\ologlcal birth weight belev the 16" centile for gestational age?*
hypertroply is an increase in left ventricular weight. Left gng can be caused by a rangeasttérs including maternal
ventricular  typertroply  (LVH) is initiated as & gpyironmen2*?® maternal undernutritio?®?’ placental
physiological adaptation to compensate for an increas?rﬁjsufﬁciencfe or fetal gene defects, including
cardiac workload as a result of either pressureafunve  chromosomal abnormalities; all of which can result in the
overlo.aoe.or in response to normal growth signalsuteln.  fetys failing to achiee its genetic growth potential and

If maintained or ecessie, LVH becomes pathological, and gyhibit asymmetric grath 22283 Epidemiological studies

is associated with a significant increase in morbidity anghe gmonstrated that IUGR fetuses are at increased risk
mortality. For example, the Framingham Heart Studysf cardiovascular disease in later life; with birth weight2

shaved that patients with ST repolarization maternal body size and placental shape and33size
abnormalities, suggesé d left ventricular strain, were six determining the subsequent risk of cavdizular

times more vulnerable to cardiac deatveroa 20 year gigegsd2.34-39

follow up period® In addition, data from the Bronx IUGR fetuses can be hypoxaemicypercapnic,
Longitudinal Aging Study also suggested that the Presengenerlacticaemic, acidotit® hypoglycaemici!

hypertriglyceridaemit® and hae increased plasma
*  indicates equal first author concentrations of cortisol and noradrenafiheThese

Proceedings of the Australian Physiological Society (2@82) 71



Early origins of heart disease

metabolic and endocrine changes can alter early cardpression is relately constant across late gestatfén.
grovth and lead to a vulnerability to cardiacMany studies hae $own that IGF-1 stimulates cardiac
hypertroply.#448 To date, the independent and relati hypertroply in adult life.”>72 IGF-1 and IGF-2 can each
impact of each insult has not been determinee!®¥¥and bind to the IGF-1R, which stimulates wiastream
other§%52 have down that in animal models of IUGR, signalling pathways wolved in cardiac proliferatidfi’3
absolute heart weight is reduced compared to normabiyd lypertroply.”*’°IGF-1R downstream effectors include
grown fetuses. In late gestation, IUGR sheep fetuses algbosphoinositide 3-kinase [PI3-K, (pH)’* protein
have a eduction in cardiomyocyte proliferatithand a kinase B (Akt)’® mammalian target of rapamycin
higher percentage of mononucleated cardiomtgs?®51 (mTORY’ and p70 ribosomal S6 kindégfor review see
indicating a delay in cardiomygte binucleation and Bernardoet al, 2010)! In fetal life, the role of IGF-1 is less
maturation. Furthermord]lJGR due to placental gwth clear as some studies shehat IGF-1 is inolved in the
restriction results in longer binucleated cardionyyes proliferation of cardiomyoges® while others hee $own
relatve o heart weight®#° whilst maintaining normal an effect on hypertrogt®
arterial blood pressufé>® It is, therefore, unlikely that the Cardiac gene expression of both IGF-2 and IGF-2R
increase in cardiomygte size in the placentally restricteddecreases with increasing gestational’aged IGF-2 can
fetuses is due to changes in afterl®zef. The IUGR sheep act on both IGF-1R and IGF-2R. Thewtwegulation of
fetus is more dependent on the renin-angiotensin s¥stefGF-2R, an IGF-2 clearance receptor late gestation is
and the sympathetic nemws system (SNSJ but not important to allev continued cardiac gwth in response to
endothelial nitric oxid&! for the maintenance of basallGF-27° The IGF-2R is a multifunctional receptor that has
arterial blood pressure. These studies suggest that therelsen traditionally viwed as a clearance receptor for IGF-2
a range of neuroendocrine adaptations in response to(Fagure 1). The binding of IGF-2 to the IGF-2R results in
decrease in substrate supply in the IUGR fetus, whi¢his comple being endogtosed; while the »racellular
maintain arterial blood pressure and this may impact on tdemain of the IGF-2R binds IGF-2, the cytoplasmic tail
growth and functional delopment of the heart. sequence regulates traffic to fdient intracellular
Altered cardiac growth is also seen in postnatal lifeompartment&®8! In the acidic conditions of the
The lov birth weight (LBW) lamb, defined as awiag a endosome-lysosome system IGF-2 is dissociated from the
birth weight two dandard deviations belothe mean of a receptor and the latter can be degraded by the constituent
large cohort of normally grown fetus&s>® which was lysosomal Kdrolase$!82 After IGF-2 dissociation, the
induced either by placental restriction or spontaneold&F-2R can then be recycled back to the plasma membrane.
growth restriction, has a relasly larger hea®® and left The IGF-2R has been thought to act primarily as a
ventriculart® weight (heart or left entricle weight : body degradatie pathway to remee exess IGF-2 from the
weight) compared to theverage birth weight (ABW) lamb circulation. Davnregulation of the IGF-2R in late gestation
Along with changes to cardiomyocyte gtty, IUGR, due is normally important to alle continued cardiac gwath in
to maternal protein restriction in rats reduces the number refsponse to IGF-2 resulting in increased cardiomyye
cardiomyogtes at birtt?? Interestingly in a genetic rat proliferation and reduced apopto&s=mbryonic mice that
model of adult cardiacypertroply without hypertension, inherit mutated and non-functiondGF-2R through the
pups at 2 days of age alsosedewer cardiomyocyte$’ maternal germ line had greater body weight andelar
Since IUGR can be caused by restriction of oxygehearts due to cardiomyocyte proliferation compared to
and/or nutrients, it is currently unclear if there is a commarontrols and die shortly before birth or at biftllue to
mechanism linking IUGR (by gnmeans) to ngdive congestie heart failure®®
cardiac outcomes in adulthood, or if there argesé )
mechanisms leading to a similar outconéGR results in  UGR, IGFsand cardiac hypertrophy
a range of neuroendocrine adaptations that may also lead to
changes in cardiac grth.>559-65nsulin-like growth factors but hi
(IGFs) are critical rgulators of placental and fetal
growth®-67 The IGF signalling pathway is a nutritionally
sensitve pathway and its actition is altered in IUGF869
IGFs also hae an important role in cardiac growth.

In humans, IUGR term placentasvedower IGF-186
gher levels of IGF-2 and IGF-1R genexgressiofi’-88
compared to those from normal gnancies. In sheep, there
is a decrease in IGF-1 mRNexpression in the muscle,
lungs and kidngs®® as well as decreased plasma IGF-1 and
IGF-2 concentrations in IUGR fetus¥s. There are
Therole of I GF signalling in cardiac growth in late conflicting results in fetuses of ewes who were
gestation undernourished from 28-78d gestation with either an
enlaged left \entricle, increased relag left ventricle
IGFs play an important role in cardiac gtb in fetal weight and increased cardiac IGF-1R and IGF-2R protein
life and are associated with both hyperplasic anekpressioR” or no chang® reported. In late gestation
hypertrophic cardiomyage growth. The expression of (135d), fetuses of undernourishedves had increased
IGF-1, IGF-2, IGF-1 receptor (IGF-1R) and IGF-2R geneardiac IGF-1R protein expression and wall thickréss.
transcripts in the left and rightemtricles has been Interestingly fetuses of wes who were wernourished wer
confirmed at as early as 80 days gestation in the shdbp same period of gestation had a similar increase in
(term, 150 days}° The amount of IGF-1 and IGF-1R geneplasma cortisol as obsew in fetuses of undernourished
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remodelling?® cardiac lypertroply with a phenotype of
increased cardiomygte size and heart weight relai o
body weight?®®%® Gaq can reactiate embryonic genes that
are markers of pathological cardiagpertroply, such as
atrial natriuretic peptide (ANP)a skeletal actin and
B-myosin heavy chaiff Specific actration of the IGF-2R
has been associated with pathological cardigetirophy;
©) ® Gaq mediated phosphorylation of protein kinaseaC-
(PKC-a) and C&*/calmodulin-dependent protein kinase II
(CaMKIll), which results in the production of natriuretic
peptides’® The IGF-2R has also been implicated in
apoptosi®®1% and myocardial extracellular matrix
remodelling via Gogl®! IGF-2 and IGF-2R dose-

©) dependently correlated with the progression of pathological
Endosome

I

hypertroply and heart &ilure following abdominal aorta
ligation 192 Furthermore, it has been sito that in addition
@ to IGF-2 other dctors such as angiotensin Il (ANGII),
lipopolysaccharide, inomycin, and tumor necrosis
factor-al%® can also actate IGF-2R. Thus, there is
emeging evidence for specific signalling that is mediated
Figure 1. IGF-2R as a clearance receptor. IGF-2R by the IGF-2R.
reduces the bioavaibility of IGF-2 by internalizing IGF-2
into the endocytic system &#10112; andansporting
IGF-2 to the lysosome to begtaded &#10113;, while the
receptor IGF-2R, is recycled b&cto the cell memtane
&#10114;.

Lysosome

ewes, but had an increased plasma IGF-1 concentratic
greater heart weight and ventricular weight, but theas w

no difference in relate heart or ventricular weight or ] [Ccatcineurina ) [ camin (]) ]

cardiac IGF-1R protein aindance at 78d gestatidhin a
sheep model of fetal anemia with fetalpbxaemia, there
was an ncreased relaté left ventricular weight with no l

change in the expression ofwvaustream cardiac IGF-1R @ Cardiacremodelling (@ Cardiacapoptosis (3 Cardiac hypertrophy
signalling proteins Akt or total extracellular signal-related

kinase (ERK)1/2, hoever, there was a decrease in @eti Figure 2. Signalling molecules affected by IGF-2R.
ERK1/2%2 Placental restriction leading to fetallGF-2R couples with @q leading to &#10112; catiac
hypoglycaemia, chronic ypoxaemia and IUGR increasesremodelling,via imbalance in the MMP-9/TIMP-2xpres-
the size of cardiomyocytes relai o heart weight'®*! sjon levels and increases plasngeo activator (FAS)
coupled with an increased cardiac IGF-2, IGF-1R anglpression, &#10113; apoptosisja calcineurin A path-
IGF-2R mRM expression at 139 days of gestatién. way, and &#10114; hyperophyvia increased CaMKII and

I PKC protein phosphorylation.
IGF-2R: aclearance or an activation receptor?

In adult life, IGF-1 has been implicated in the Lambs that were born LBW had an increased cardiac
initiation of ventricular fypertrophy?® and in a range dh  |GF-2 and IGF-2R genexpression at 21 d of age compared
vivo’® andin vitro® experimental models, IGF-1 has beeno ABW lambs!® In the ABW lamb, an increase in cardiac
shavn to act on the IGF-1R to increase cardionyyec |GF-2R gene expression is related to a redhti smaller
size?”% Both IGF-1and IGF-2 can act on the IGF-1R tQeft ventricle!® In contrast there was a positirelationship
mediate effects on cardiomyocyte gth. Hovever, when  petween IGF-2R protein abundance and nedatieft
the IGF-1R signalling pathway is bloetk in vitro, the ventricular weight in the LBW lamb, suggesting that
addition of IGF-2 still results in an increase in the size QGF_ZR may Signa| a cardiac hypertrophic pathway in the
cardiomyocyte$? This indicated that IGF-2 may also act Bw lamb (Figure 3). The IUGR-induced increase in
on the IGF-2R to stimulate heart cell gt and would be cardiac IGF-2 and IGF-2R gene expression persists from
consistent with the aetion of a signalling pathway. fetal to postnatal life and may be epigenetically

Studies in cultured H92c Cardiomyoblastsvshhat programmed to result in acition of a fypertrophic
the IGF-2R can bind to G protein-coupled receptors Wit§ignalling pathwy rather than a clearance pathway (Figure
aq subunits (Gxq: Figure 2). This is an important disety ).
because @q pathways are associated with cardiac

Proceedings of the Australian Physiological Society (2@82) 73



Early origins of heart disease

) )

= o - 4 1

_g, 4 ) _g’ ././'/./‘

° O ©

z 3 © 70 o< 0© 2 3 °

> >

Q O 2

g 2 22

S 2 =

2 r2 = 0.492 < 2

© 1{P=0011 x 1 *"L '00'06491

K] = el = 0.

g | Y=-0.012x+4.096 ABW  E |y =0.014x + 2.751 LBW

5o ‘ ‘ ‘ : ‘ - So ‘ ‘ ‘ ‘ ‘ ‘

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Lamb Heart IGF-2R protein (au) Lamb Heart IGF-2R protein (au)

Figure 3. In the normally gown aveage lirth weight lamb (open circles) left ventricular weight relative to body weight is
inversely correlated to IGF-2R protein abundance; gesging IGF-2R is acting to clear IGF-2. In the low birth weight
lamb, howeer, (filled circles) left ventricular weight relative to body weight is positively elated to IGF-2R mtein
abundance; suggsting that IGF-2R is causing hypertropHy.

histones, the proteins that are required for packaging DN
into chromatin, and small non-coding RNAs. These
epigenetic modifications act either by interfering with the
binding of transcription aatétors and repressors to specific
gene promoters, and/or changing the structure of chromatin
itself.2*4 In the heart, IUGR did not change the degree of
mettylation of the 3 CTCF binding sites within the
differentially methylated region (DMR) dfGF-2/H19 or

? Epigenetics |

Chronichypmfaemia DMR W|th|n intron 2 Of IGF-2R18 ANG”'induced
Hypoglycaemia hypertrophyin vivo andin vitro increases cardiac IGF-2R
Maternal undernutrition gene expression but there is nofetiénce in the DN

methylation within the IGF-2R promoter compared to

Figure 4. Intrauterine growth restriction and cardiac controls!®® Interestingly using inhibitors to indiidually
hypertrophy. IUGR, as a result of aang of ®tal and block histone acetyltransferase (HAT) and histone
maternal insults, is associated with cardiac hypertrophy iféacetylase (HEC) activity, it was demonstrated that
fetal and postnatal lifeThis hypertrophy is associated with Nistone  acetylation was essential for ANGIl-induced
increased cardiac IGF-2 and IGF-2Rege apression, !GF-2R gene xpression.?® Furthermore, chronicypoxia

which emeiging evidence sugsts may be epapetically and maternal undernutrition results in epigenetic
regulated. modification of other genes including PKE; ANGII

receptor 2 and peroxisomal proliferatmtivated recepton
_ _ in the heart!>17 Additional irvestigations are required to
Programming cardiac | GFs better understand the epigenetiguiation of IGF-2 and

IGF-2 and IGF-2R are parentally imprinted genes.IGF_2R in the heart.

IGF-2 is expressed from the paternal allele, #8&-2Ris  conclusion

expressed from the maternal allé¥:1% The imprinting at

these loci imolves epigenetic modification at giens IUGR is associated withMH and an increased risk
within, or adjacent to the gene, and it is thought that thesédeath from heart disease later in life. The IGFs and more
epigenetic modifications may be vulnerable to changes $pecifically the IGF-2R h& bkeen implicated in
the intrauterine arronment®’-111|t has been shown that pathological lgpertrophyvia Gog sgnalling. Interestingly

in vitro culture of the sheep embryo results in epigenetibe IGF-2R was traditionally viewed as a clearance
modifications atGF-2R1% More recent studies raise thereceptor internalising IGF-2 to prent it from actvating
possibility that more subtle or physiological insults, such g#wysiological typertroply through the IGF-1R signalling
IUGR, may result in epigenetic modifications ofpathway IUGR is associated with an increase in IGF-2R
IGF-2R112113The major epigenetic processes include?DN and its ligand IGF-2 in fetal life and this effect persists into
methylation, acetylation, methylation or phosphorylation opostnatal life. Data presented in thigieev suggest that the
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IGF-2R may contribute to the adverse adult cardiac
outcomes in IUGR irdnts. It is clear that further studies are
required to understand thegrdation and programming of
the IGF-2R and to determine whether or not irgation
stratgies to suppress the IGF-2R are likely to be beneficial
in improving lifelong cardiac outcomes after IUGR.
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