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Preterm neonatal cardiovascular instability: does understanding
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Summary there is relatiely limited physiological monitoring of
) . babies, considerable variance in the treatment of
1. Preterm newborns, particularlyery low birth  cargioascular  instability between  clinicians  and
weight _newborns, frequently experience intermitte%stitutions, and unresabd uncertainty er optimal
hypotension and/or hypoperfusion. ~ treatment stratges, all of which ultimately contribute to
2. Organ perfusion is largely distinct from systemic ¢gjjyre to efectively improve cutcomes. @ further improe
hypotension, suggesting that changes in underlyasguar e outcomes after premature birth we need a greater
tone are the major determinants of perfusion. ~ understanding of the multifactorial pathogenic mechanisms
3. Preterm fetuses k& a emarkable anaerobic nderlying injury and illness. This includesveleping a
tolerance and ability to sume mejor insults with no or mch fuller appreciation of hoadverse gents and clinical
limited injury, balanced by relate immaturity of ly inenentions before birth affect the cardiscular

autonomic responses. o _ . _ adaptation of the preterm newborn to life.
4. Exposure to hypoxia-ischaemia and infection

trigger compl& changes in vascular tone thatolve over  Hypoperfusion is not necessarily due to hypotension
mary days, and there isviglence that these are centrally

controlled, and in part lired with underlying aan Hypotension and ypoperfusion at birth, particularly

metabolism. during the first days of life, and notably in lower birth
5. Hypoperfusion frequently occurs afteypoxia- weight preterm infants, are widely befgd to initiate or

ischaemia without ggen injury occurring. exacerbate injur§”’ Most current management is based on

6. Hypoxia-ischaemia, infection and maulinical the apparently obous concept that poor blood flomust

interventions such as steroid theyagnd ventilation can be related _to inadequate perfusion pressure. In prfictice,
interact to increase or decrease the risk of brain injury. ~ '€cent studies suggest that for mosams, particularly in
the first fav days of life, changes in vascular resistance

Background rather than blood pressure are the primary determinant of
. o . blood flon.8® Pahologically lav systemic blood fla
Globally, preterm birth rates are rising, reaching 13%,ccurs in one third of imits born before 30 weeks
of live kirths in the USAL Overall, preterm infants are 70% gestatiori In 80% of cases it was lowest at 5 to 12 hours
more likely to die and 75% more likely to gifillness and ¢ age, and progressly improved with time; less than 5%
injury  than  term jrﬁnts? Understandably most  f jnfants had lov flows by 48 fours!! Although some
pompllcgzatlons occur in the smallest, most prematut§eterm infants did appear to be in ‘compensated shock’,
infants; but recent studies shothat the risks of injury and yiip hypotension and globalhoperfusion, in the majority

disability are increased e fold even in “late preterm” pynoperfusion was associated with normal  blood
infants. Since delery is much more common at later pressurd:’ It is possible that the definition of ‘normal
gestatlor)s anq m_ortallty isvip this group may contribute as 150d pressure’ might not be appropriate.véitheless,

much disability in absolute numbers as more preterfiere is increasingvidlence that blood pressure support

births.‘_"5 The high leel of neurodeelopmental disability \yith volume or inotropic agents does not generally imero
associated with prematurity poses a considerable burdengher total blood fiav or neonatal outcomesl2

individuals and d&milies, and on healthcare and education In the first 24 hours of life, superioena caa (SVC)

resourced. Thus, the importance of finding ways topgoq flv, a measure of perfusion of the upper bpiya
improve the outcomes of preterm infants cannot bgetier prognostic marker for mortality and atse
overstated, for the individuals, their families and the Wideﬁeurodeelopmental outcome than blood presstfe.
community. _ _ Similarly, the recent ELGANS study showed that mean
_Improving the outcome of premature birth will 504 pressure and labile blood pressure in the first 24
require both the delopment of n@ interentions, and nhoyrs did not correlate with neurological outcomes at 24
more detailed understanding of the complicationgonthsl? These findings are highly consistent with the
associated with preterm birth. Careiscular instability in - 5601 correlation between mean arterial blood pressure and

early neonatal period in preterm infants is highly associatggstemic perfusion as measured by SV@ftr with left
with adverse outcomésAt present, een in intensve @re, \entricular outpu
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Aetiology: can we disentangle the seed from the soil? The chemoreflex, or rolling with the punches around birth

Cardiovascular instability is undoubtedly Because the fetus relies entirely on the uteroplacental
multifactorial® The key dements that need to be considere@xchange to obtain oxygen, the risk gfpbxia to the fetus
include the baby dage of maturation, adaptation tois high. Indeed labour is consistently associated with
neonatal life, and the potential forpmsure to injuryand to  recurrent fetal ypoxia?® Whereas the barorefle is
clinical interventions such as maternal corticosteroids, tdggered mainly by short-term changes in pressure, the
trigger eolving changes. Likely because of thesetbrs, chemoreflg is the primary early response to an acute fall in
the nevborn’s cardiovascular state changes rapidlyenthe oxygen tension. Preterm fetal sheep at 0.6 or 0.7 gestation
first fev days? As previously reiewed, factors such as shawv very different and apparently blunted responses to
poor myocardial function secondary to immature cardianoderate inhalational hypoxia, haemorrhagypdtension,
structure and patemtuctus arteriosugPDA), with arterial and partial umbilical cord occlusion compared with
duct “steal’, may contrilite to relatrely poor systemic term?1-25 These dramatic dirences are largely related to
perfusiont* However, the extent to which conditions suchthe far greater anaerobic reserves and ability of the-near
as PDA contribute to injury remains highly debatétiThe midgestation fetus to sumé svae asphyxia without
focus of the present view is the hav maturation of fetal neural injury compared with terfi.When preterm fetuses
reflex responses, and fetal adaptation to advereet® such are &posed to a more profound challenge, such asyasph
as asphyxia and infection, may shape the adaptation of thduced by complete occlusion of the umbilical cordythe

premature infant to life after birth. shav a robust initial chemoreflex-mediated bradycardia and
) ) peripheral ®soconstriction that are highly similar to the
Autonomic M atur ation responses at terf:28

There is w®idence of subtle maturation of the
response to such supramaximal insulter ¢he last third of

In adults, the arterial baroreflés critical for short- gestation in the sheepoilexample, the rate of femoral
term maintenance of blood pressure around a set med@soconstriction at the start of veee asphyxia is
The main derent pathways of the barorefleare the significantly slever at 0.6 than at 0.85 of gestat?@n.
branches of the autonomic neos system, which alter Consistent with this, pharmacological blockade studies
heart rate (HR) through sympathetic and parasympathe$idggest that resting sympathetic memetivity (SNA) is
nenous system aadity, and peripheral vascular resistancemuch lower in the preterm fetus than at téf. Direct
through the sympathetic nerves. Potentjallgduced recordings of RSN confirm that the preterm sheep fetus
barorefl& sensitvity in preterm infants could increasehas bursts of RSAthat are coordinated with the cardiac
short-term cardigescular instability and thus increase riskcycle, but at a much lower frequgnthan in adults! We
of neural injury Supporting this hypothesis, in preterm (0.7speculate that this relaé immaturity is part of anerall
gestation) fetal sheep, the cardiac baraxeledrikingly —reduced sensitivity to homeostatic challenges, such as
asymmetrical, with a significantly slower increase in HR igevere hypoxic stress, during or after birthlowever, there
response to aafl in blood pressure than the reciprocal f are fev direct data, and further research is essential to
in HR following a rapid rise in pressutéFurther dthough ~ determine whether this is a substantial problem, or is
background renal sympathetic nersctivity (RSNA) was compensated for by a much greater neural tolerance to
present een in these ery immature fetal lambs, it was notasphyxial injury in the preterm brafA.
under barorefbe control despite rapid changes in arterial
blood pressure, strongly inferring that vasomotor responsE

to hypotension are immature. Just as the fetus transitions to becomeveboen, the

In cpntrast to preterm fetuses, near-term feta'l She%’sponses triggered by exposure to hypoxia or infection
have relatvely mature barorefies as own by efective  pefore birth can stillelve dter birth. Thus, it is important
suppression of RSN.du'ring typertensiort’ Nevertheless, to consider whether injury before birth might be
some aspects remain immature ream, as although HR' gyacerbated by ongoing illness or treatments after birth (the
increased during i voltage sleep (aste a rapid &€ myjiiple hits’ hypothesis), or be confounded with neonatal
movement sleep), there were no changes during highympjications. Perinatal hypoxia is more common in
voltage sleep (quiet or non-rapid eyevement sleep), and jntants born prematurely than at tefnand frequently
there were no significant changes in RSMNuring fetal occyrs before the onset of lab8d Consistent with this,

hypotension in either sleep stéfeThesg findings support here is evidence that neural injury occurs i thirds of
human data shweing that barorefbe sensitiity was lower in - jhtants before birth and or in the immediate neonatal

preterm neonate$. Thus, the ‘late’ preterm méorn period34

When does the baroreflecome of ge?

Ige newborn was a fetus not so long ago

appears to he @ impaired ability to re.spond' ra}pidly to In the preterm fetal sheep, veee asphyxia is
periods of hypotens.lon,' for example during fluid imbalancgsgociated  with delayed (secondary) onset of
and systemic complications after preterm bifth. vasoconstriction in both central and peripheral beds that

lasts for may days3® This may at least in part, help
support impaired myocardial functiéh. Similarly,
vasoconstriction after perinataypoxia has been postulated
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Figure 1. Carotid blood flv (CaBF) and superior mesenteric artery blood WidSMBF) from preterm fetal sheeplhe

data ae a 0.7 gestation after 15 minutes (panels A and C) or 25 minutes (panels B and D) of asphyxia induced by com-
plete umbilical cad occlusion (UCO). 15 minutes of asphyxia caused either no or trivial brain jnjurgontrast with

sevee dubcortical and white matter injury after 25 min of occlusion. Neither insult caused gut oy kijimg. These data
demonstate that hypoperfusion is observed in central and peripheral begsdiess of morbidityand that the patterns

differ as a function of the duration of the insult (and thuesty) and the specific vascular bed. Date ane minute aver

ages from individual fetuses. The end of the occlusion period is time zero.

to promote redistribution of cardiac output to vitayjas® perfusion is appropriate for demattd.

The mechanisms of this delayed hypoperfusion remain In adults, the duration and speed of onset of cerebral
controversial. Post-natallythere is evidence that changes irhypoperfusion, and to a lesser extent its degree, are broadly
endothelial function after ischaemia may play a role irelated to the serity of the insult?®*1Consistent with this,
mediating delayed ypoperfusiort® For example, gtokine in preterm fetal sheep the patterns of hypoperfusion are
and chemokine release in response to inflammation ceslated to the duration of w&e asphyxia (Figure 1).
facilitate release of adhesion molecules, leading to impair&dirther there may be secondary episodes of superimposed
blood flon.%® However, numerous studies mo strongly vasoconstriction during seizures (Figure 1, panel @). F
suggest that secondary cerebral hypoperfusion, particuladyample, we obseed that the gut is particularly
during the early recmry phase, actually reflects reducedsusceptible to seizure mediated wilochanges and
neural metabolisr! In older fetuses and newborn lambshypoperfusion was less mark after a shorter insult, with
after hypoxia, although oxygen dadiy to the brain ws faster resolution of hypoperfusion. These data, and those
reduced during postyipoxic secondary ypoperfusior?®  shown in Figure 2, highlight both maeki differences in the
there vas no significant change in arterio-venous oxygegpatterns of blood fle between the @an beds after
extraction®39 Further following seere hypoxia in near asplyxia, and the dynamic changeseptime, particularly
term fetal sheep, delayed pospbxic cerebral in the first hours of res@ry. These changes occur despite
hypoperfusion was associated with suppression of cerebrarmal or elgated blood pressure (Figure 3).

metabolism anthcreaseccortical tissue oxygenation, again

consistent with the ypothesis that the reducedvék of
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Figure 2. Carotid blood flw (CaBF), superior mesenteric artery blood #o(SMBF), renal blood flev (RBF) and
femoral blood flav (FBF) responses to 25 minutes of umbilical cord occlusidrhese demonstrate the temporadiges
in different vascular beds during the first 24 hewf recovery from asphyxia. Data arane minute averges from a sngle
fetus. The end of the occlusion period is time zero, occlusion period denotey Haded box.

Sympathetic mediation of hypoperfusion: myocardial and followed by stabilization of blood pressure around baseline
neural support? values (Figure 3). By contrastypotension occurred when
o ) . gut hypoperfusion was pvented by phentolamine,
There is increasing evidence that the sympathefg)owed by ariable pressure fluctuations. Notabiie
nenous system plays a central role in mediating poSfieriod of lypotension was most pronounced during the
asplyxial changes in central and peripheral bloovfmd  ¢oresponding period ofypertension in control fetuses.
contritutes to neuroinhibitiof?:*> We reviously reported These data highlight the need to appreciate the temporal
that post-asphyxial hypoperfusion of the preterm fetaﬂib“t'nature of perfusion and blood pressure changes, and the
was prevented by infusion of the med a-adrenergic cjgse relationships with the cessation of aneast ent
antagonist pheptolamirfé.ln control_ fetusesypoperfusion |ixe hypoxia. Interestinglythere was no increase in HR
was ot associated with yipotension, readless of the (e primary determinant of combined ventricular output in
vascular bed being measured (Figure 3). Rathere was a he fetus) to compensate for thisllfin blood pressuré
brief period of mild hypertension during the first 3 hoursrpis may reflect the sensitivity of the barorefi tis age,
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Figure 3. Mean arterial pressure in vehicle control fetuses and phentolametases Data ae acne minute mearSEM
from four hous before asphyxia induced by 25 minutes of umbilicalccocclusion (UCO, occlusion period not shown)
until 24 hous ater UCO. Saline or ther-adrenegic antagonist phentolamine was infusedam@nously to the fetus for 8
hours darting 15 minutes after the end of UCO. In the control groupgtiean nitial moderate but significant increase in
blood pessue, which resolves to baseline values around 3 hours, remaining stableafterin contrast, while phento-
lamine estoed gut blood flow (seeidure 4) it caused hypotension during thesfir3 hours, with variability in mssure
observed thereafter.

as discussed abe Howeve, these data also suggest thatlevelop greater asoconstriction than the renal bed (Figure
vasoconstriction is necessary to support blood pressu®), suggesting that these beds are also more important

particularly in the early hours of regwy from asphyxia. contritutors to increased peripheral resistance in fetuses as
The heart of the preterm fetal sheep is very resistanell as adults.
to injury® Although overt cardiac damage may not In contrast with the data ab® sipporting an actie

develop, reversible myocardial injury and cardiacrole for central SNS-mediated ypoperfusion, in
dysfunction hse bkeen reported during reeery from preliminary studies we found thatem very early infusions
perinatal asphyxia in both the sheep and the hdfitiin ~ of the nitric oxide donor L-ginine, or the endothelial
adults exposed to decreased cardiac output resulting framtagonist bosentan, after asphyxia in preterm fetuses did
cardiogenic  or  Ypovolaemic  shock, seleegg not prevent hypoperfusion (Figure 4)These data coupled
vasoconstriction of the &frent mesenteric arterioles iswith the rapidity of onset of hypoperfusion provide further
reported to be crucial in sustaining total systenaiscular support for the hypothesis that post-asphl peripheral
resistance, thereby maintaining systemic arterial pre§$urezasoconstriction is centrally controlled. There is also
Under these conditions, while there is somegree of evidence that secondarymoperfusion of the brain is both
vasoconstriction in other peripheral systems, it isctively controlled and associated with neuroprotectiar. F
disproportionately greater in the mesenteric circulatiomxample, phentolamine infusion restored cerebral perfusion
Thus perfusion of non-mesenterigans can be maintained to ‘normal’, tut was associated with earlier onset of post-
at the ‘expense’ of the gff.Of interest, in the preterm asplyxial seizure$? Noradrenaline is an important
sheep fetus, the gut and femoral artery beds appearettdogenous neuroinhibitorand it is likely that the
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sympathetic actation after aspixia contributed to central
protective suppression of brain activity.

Early phentolamine

151A ;

104

ety

SMBF(ml/min)

Delayed phentolamine

15B
+7

SMBF(ml/min)
S

0- L-arginine

157C ; ; ;

SMBF(ml/min)

0 Bosentan
300D I l l l l ”
251
20
151
10y

SMBF(ml/min)

6 0o 3 6 12 18 24
Time (hours)

Figure 4. The €fects of thea-adrenergic bloker phento-
lamine. The blo& was started at 15 minutes (panel A) an
30 minutes (panel B) after the end of asphyxia, dirémne

(panel C) and bosentan (panel D). The first arrow denot@é/

the start of infusions of ea@gent, and subsequent anvs
repeated boluses given to attempt to iawerbood flow
Data ae ane minute averges from individual fetuses. The
end of the occlusion period is time zero.

Consistent with this, selecé a,-adrenegic receptor

depolarising aves (spreading depressionawes) deelop

after cerebral ischaemia, and can contribute to expansion of
injury by increasing the work load of stressed c&l§his
increasing engy imbalance, in turn, hastens the gyer
failure in sick cells, promoting impaired cellular
homeostasis, ATP production, and initiation of cell death
processes (secondary energy failure).

Collectively these data further support the concept
that reduced blood fio is coupled to reduced metabolism
during recwoery from hypoxic-ischemic insults and that this
is beneficial for reogery from asphyxia. These data are
consistent with the lack of fefacy of mary clinical
interventions such as a volume expansion, administration of
inotropes, and closure of thductus arteriosusafter
birth.1352 Thus, despite the differences between fetal and
postnatal life, there is a considerable need for further
research to determine whethembperfusion is a cause of
morbidity or merely a consequente.

Prolonged effects of expoguio infection/inflammation

There is nw considerable wdence that perinatal
exposure to infection and inflammation such as clinical
chorioamnionitis (uterine infection),  asculitis
(inflammation of blood vessels) in the chorionic plate of the
placenta and/or umbilical cord, and highvds of pro-
inflammatory cytokines in amniotic and umbilical blood,
are associated with increased mortality and morbdity
Some studies ka found no association between
histological chorioamnionitis and risk of white matter
injury, whereas neonatal sepsis has been consistently
associated with increased risk of brain injefry°

There is relatiely limited information on the
haemodynamic effects of sepsis in pretermvbuns®® and
at present there are no agreed treatment guidelines for the
management of gere sepsis and septic shock for preterm
neonates. Thigs complicated by the lack of normadi
cardiovascular data for preterm iafits>’ It is also clear that
the responses of the wieorn are very variable between
infants, dynamic \er time, and may differ to that of the
adult in response to treatméfi®’ In this setting, the
immediate effect of early onset neonatal sepsis appears to

e mainly asodilation, leading to hyperperfusion and often
potensior?*5® Other studies he& reported lpotension
with peripheral wasoconstriction and increased cardiac
output, or “normal” blood pressure with either
vasodilatation or @soconstriction or hypotension with
either stat@®57 This may reflect a continuum from chronic
low key inflammation, secondary to chorioamnionitis,
through to acute sere infection®’

Nevertheless, persistent vasodilatation is often

blockade was associated with increased epileptifornvbsered after gposure to inflammation in adult humans

transient actiity in the latent (early resmry phase) and
increased brain injury after 3 days reeq.*® Corversely,
exogenous infusion of am,-adrenegic receptor agonist
was associated with impngeed outcomes? It is likely that
epileptiform transients are a manifestation of pggtetxic
hypereccitability of the glutamate receptoas a@curs in
immature rodent®? In adult rodents, peri-iafct

86

and animal modef® Indeed, much of the acute morbidity
associated with significant infection or inflammation in
adults is associated with endothelial dysfunction, with
altered release and senstyf to vasodilators and
vasoconstrictors, which in turn leads to haemodynamic
instability and ogan compromise®® In fetal experimental
studies, exposure to gram gaBve lipopolysaccharide
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(LPS) has been associated with variable haemodynammeurotoxicity likely mediated by the ytokine/microglial

effects, likely reflecting differences in dose and timing ofesponsé® The fetal hemodynamic changes aftep@sure

exposure between studies. Some studies observed toogram positie bacteria, while persistent, were relaty

change in blood pressure or bloodwllin fetal sheep®®? modest, and it remains unclear if yhaepresent a

whereas others reported acuaisfin blood pressu®;%°or permanent change in the trajectory of blood pressure, or

a tansient fall, folleved by increased arterial bloodpersist into neonatal lifeNonetheless, it is reasonable to

pressure by 48 to 72 hours of reexy.%3 speculate that changes in autonomic or endothelial function
Typically, early fetal typotension in responses to LPSmight compromise the ability of the fetus andvbhern to

has been associated with cerebral vasodilatation tretapt to furtherents such as hypoxia.

maintained perfusion and oxygen deti.5>% By contrast, _ _ o

a gudy in the late gestation sheep fetus found acutynergy with other insults: sensitization and tolerance

transient cerebral vasoconstriction after injection of LPS, Profound hypoxia or septic shock causing acute

T : . : . %jury around the time of birth are only seen in a minority
repeated |nject|on§ Vasod!latanon was QSSOC'{."ted W'thof infants, and are insfigient to account for the majority of
evdence of transiently increased nitric oxide (No)ong-term neurodeslopmental disability in preterm iafts.

S : . . X
grod_luctl?_na consistent Vt\)"th en ddotc;]xm T_t;’OSC k'in ad.L;j"ﬁs. However, infants may frequently bexposed to both insults.
Imifar indings were observed when waegegto Intriguingly, experimental data in rodents suggest that

term nevborn lambs, with chronic loss of sensitivity to the%)efposure to mild infection or inflammation can sensitise the

;/asod|flato; tlrhadlylflnlr?r,‘gqpossmly secondary to LPS-induce rain, so that short or milder periods gpbxia-ischaemia,
0SS ot endothetial cefis. which do not normally injure the ddoping brain, can

In 0.7 gestation preterm fetal sheep, exposure {ﬂ 3 :
. " . N . gger seere damagé? However, the effect is compbeand
killed gram positre bacteria (OK-432 or Picabinil), deed time dependent. A o dose of LPS gien either shortly

from low virulence heaggkl'(!ed Su-strain of type.3 Group A(four or six hours) or well before (72 hours or more)
strept_ococcus_ PJENES, ™= Was assouateq .W'th gcute, hypoxia in rat pups was associated witicreasedinjury
transient peripheral and centrahseconstriction without ‘sensitisation’)’® In mice, fetal gposure to LPS dcted
hypotensiorf® This phase was coupled with reduced braiéﬁe responses. toyboxia, @en in adulthood. with both

actvity 3”90 suppression of fetal body and br?athingeduced and increased injurin different rgions/* In

mwements. Thesg datg support the.hypothes!s th"’!:t ntrast, when gen at an ntermediate time (24 hours)

infection was associated with reduced brain metabolism a (ifore hypoxia/ischaemia, LPS actualigduced injury

an appropriate reduction of bloodvlorather than loss of (tolerance’)73 ’

regulaéory (;ﬁntrol. K aft {0 OK-432. th No lage animal studies ka been undertaken to
ver tne week after exposure to UR-4oz, MEBW o4 1ate ley mechanisms or to confirm whether these

progressie central and peripheral vasodilatation with

; . . relationships hold up in more comple species.
flo 69

mpreased blood (Figure 5).° Although rypotensmn Nevertheless, recent data suggest that prenafadire to

did not occurthere vas loss of the normal secular increas

. . L . fhflammation exacerbates ventilation-mediated brain injury
in arterial blood pressurever this 'qme (Flgurg 5). Fe_tal supporting the concept that multiple insults can couiteib
gro(/jvthtwas nc(;tll etté:?ted, suﬁqg?stlng that tp[!s rd@f{y ¢ in complex ways to perinatal brain injurfy Intriguingly,
modest —vasodilatation TeTlects ~a resetling o hf?1ere is nw evidence that exposure of preterm fetal sheep

barorecﬁiptor threshold.In .Com.raSt with praous s.tud|es. to a clinical course of maternal glucocorticoids is associated
of LPSP® there were no significant changes in cwculatmgvi h acute changes in EEG transient wigti and

nitrite levels, suggesting that these changes were not reIatg ileptiform  @ents, followed by evidence of neural
:ﬁ ?Itt(;red NO prr?;uct;;o‘??. Hl?wa:jer, It remains po?s;ﬁle maturation’® Given that seizures in early life in the rat can
at there may en aftered responsness ot e j,q,ce neuroprotection through preconditioning

vasculature to vasodilator stimuli, or increased induction %echanism:@ it is plausible that steroids may also trigger a

other \a:stcr)]dggtcglrs. Altte rnately(,jltrtlere are sltrongldata t? sensitization/preconditioning sequence independently of
suggest that inflammatory mediators can alter release o 'p%rthological gents.

sensitvity to, vasoconstrictors without changes in

vasodilator activity172 Summary
Notably dthough OK-432 vas associated with acute o _
and chronic changes in cerebral bloodvfim al fetuses, The preterm fetus xbibits a remarkable anaerobic

only one fetus sustained neural injury; a bilateral infarct éplerance and ability to sume major insults with no or
the hippocampus. This injury occurred despite normé&mited injury.32 At the same time, it is clear that autonomic
blood cases and a time course of bloodwfland blood function is still deeloping over late gestation, and that
pressure changes which was similar to those of the otd@pponses to acute arteriaypotension are particularly
fetuses. The early delopment of seizures suggests thatmmature. Premature wiorns are commonly exposed to
injury occurred shortly afterxposure. Thus it is unlédy Perinatal hypoxia and infection around the time of birth,
that injury was directly related to changes in perfusion. Thighich trigger long-lasting changes in central and peripheral
further supports pmus data that neural damagetone, which in combination can sensitise the brain to injury
associated with infection is primarily associated witfrinally, there is increasingvedence that ‘standard’ clinical
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Figure 5. Time course changes in mean arterial blood pressure (MAP) and femoral bloadfiBF) Data are fom 0.7
gestation fetal sheep wheceived a bolus inipleural injection of either saline (open circles) or OK-432 (0.1, aigsed
circles). Thearrow denotes the point of injection. DateareantSEM. Note the fail@r of Hood pressue to increase ger
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