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Summary essential for the maintenance of cardiac excitation and
] ] contraction and mitochondrial TR production. There is
1. The L-type C&" channel is the main route for j,creasing eidence suggesting a role for thgtaskeleton
C&* entry into cardiac myocytes, which is essential for thg, modulating both L-type Ga channel actity and
maintenance of cardiac excitation and contractionsitochondrial function. This article presents evidence that
Alterations in L-type .C%-‘L _channel activity and &4 in addition to mediating G4 influx, activation of the L-
homeostasis ka keen implicated in the gelopment of type C&* channel may also modulate mitochondrial AD

cardiomyopathies. o as a result of transmission of vement from the, subunit
2._ Cardllac excitation and contraction is fueIIe.d PY¥t the channel to the mitochondria througytoskeletal
adenosine-5triphosphate (ATP), synthesaedmoteins_

predominantly by the mitochondriaa the C&*-dependent
process oxidate phosphorylation. Mitochondrial reaed TheL-type Ca?* channel
oxygen species @S) are by-products of oxidedi
phosphorylation and are associated with theldpment of
cardiac pathology.

3. The gitoskeleton plays a role in communication of cat
signals from the plasma membrane to intracellula]:[mction
organelles. There is good evidence that both L-typé*Ca !
channel activity and mitochondrial function can b
modulated by alterations in the cytoskeletal network.

4. Activation of the L-type C& channel can gulate
mitochondrial function throughytoskeletal proteins as a
result of transmission of mement from theB, sukunit of

Role of the L-type G4 channel in C&* homeostasis and
contraction

is a key ceterminant in the control of cardiac
Maintaining C# homeostasis is therefore
essential to life. A number of plasma membrane and
Sntracellular C&* channels and transporters areolsed in
maintaining C&" homeostasis during the course of cardiac
excitation, contraction and relaxatidn.

The L-type C&" channel is the main route for €a
the channel that occurs_dl_Jring sation and inactiation Qf (ér;tzzy |(r:1rtlzncr?;ilaéch;nggscyttise. ?::;Iu?r:t?:l? h;ﬂgsl_e tygf the
the channe_l. An ass.ouatlon b etwegmasleletql Proteins -y entricular action potential and the upstecdnd duration of
and the mitochondrial c_xrtag_e dependent anion channekhe atrial pacemaker action potentiafdn cardiac muscle,
(VDAC) may play a role in this response. C&* influx during depolarization of the action potential

. ; I
i 5't' Th.e L-té/pe ca lchangexlxols_ the |n|t|%tlor fOf initiates the sequence o¥emts that result in contractioh.
contraction in cardiac muscie an IS TESPONSILIE 101 itiation of contraction requires a rapid and significant

regulating . rmtochondnal . AP/adenosine .d'phOSphateincrease in intracellular Eafrom a basal concentration of
(ADP) trafiicking. This article presents evidence that %pproximately 100 nmol/l to Emol/l.4S This is achieed

fu_nctional cpupling betv_veen the L—t_ype ?Ca‘hanngls and by a process known as €dnduced C# release (CICR),
mitochondria may assist in _meetmg myocardial gper which is initiated by C¥ influx through the L-type G4
demand on a beat to beat basis. channel in response to depolarization of the action
potential® Ca2* influx via the L-type C&" channel triggers
C&* release from sarcoplasmic reticulum (SR) stories
The otoskeletal network is well known for inositol triphosphate receptors (B and ryanodine
modulating cell morphology motility, intracytoplasmic receptors (RyR}:>® IP,R2 expression is the main JR
transport and mitosis. It has also been proposed tmatbtype gpressed in atrial and ventricular mytes!/-®
cytoslkeletal proteins assist with the communication ofP,R2 hae keen shan to play a large role in CICR in
signals from the plasma membrane to intracellulatrial myocytes, with IER2 expression being 6-10 fold
organelles. Cardiac muscle has a high demand forggner higher in atrial versus ventricular myaes? In ventricular
Mitochondria are comple organelles responsible for myogytes, C&" release from IER has been demonstrated to
maintaining production of ATP to fuel cardiagciétation modulate C& dependent transcription factorswever the
and contraction. This includes the rapid uptalf C2* rate and xtent of C&" release from IER done is
during the cardiac cycle. insufficient to result in C# induced C&" release'° IP,R
The L-type C&' channel is central to myocardialand RyR are actited at submicromolar and micromolar
physiology Ca?* influx through the L-type Ca channel is concentrations of Ca respectiely.® It has been proposed

Introduction
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that this may assist CICR by enabling locafQalease of
one receptor to astite, and therefore amplifCa?* release
of a nearby receptdt Overall, this CICR mechanism,
initiated by C&* influx through the L-type CGa channel in
response to depolarization of the action potentalifates
rapid and significant increases in intracellula?*Gahich
are essential to contraction.

Cardiac muscle fibres consist of ngaoverlapping
strands of contractile proteins, including thick filament
comprised of myosin and thin filaments comprising acti
and tropomyosin. Contraction occurs as a result of

comple interaction between these contractile proteins i

response to SR Eareleasé. C&* released from the SR

. ) S e
binds to troponin C present on thin filaments and caus%
(o}

allosteric modulation of thin filament tropomyosin t
unblock thick filament myosin binding sites. Myosin
powered by Kdrolysing ATP, then mees dong these
binding sites resulting in muscle contraction. Contraction
closely follaved by relaxation of the muscle fibres, which i
achizved via removal of cytosolic C&*. This occurs
predominantly by Cd uptale by the SR via the
Ca&*-ATPase C&" pump? Remaining C#& is extrudedvia

the N&/Ca* exchanger (NCX}%®

Structue of he L-type C& channel

activation and inactiation kinetics?%-21
The L-type C# channel and cardiac pathology

There is a significant amount of evidence thguas
that phenotypic remodeling and thevdepment of cardiac
hypertroply can occur as a consequence of alterations in L-
type C&* channel functiort?2” Hypertrophic stimuli hee
been shown to aetite a program of fetal cardiac gene
ﬁanscription that encodes proteingdived in contraction,
B2+ handling and metabolisAi:2° The cellular phenotypic

anges associated with cardiagértroply are preceded
By reactvation of postnatally dormant embryonically
ressed genes while vgeal "adult" genes are
ressed?3! Inhibition of the L-type C# channel with
nicardipine has been demonstrated tos@reactvation of

the fetal gene program by isoproterenol in neonatal rat

cardiac myogtes?? In similar studies, inhibition of the L-
{§/pe C&* channel with nifedipine pwented cardiac

%ypertropry induced by mechanical stretch in neonatal rat

cardiac myocyte$?

Transgenic mice \@rexpressing thea, . sukunit of
the L-type C&' channel exhibit increased intracellular’Ga
that results in the delopment of cardiac ypertroply and
consequently heartailure?® Similarly, transgenic mice
overexpressing the3, sulunit of the L-type C# channel

Cardiac L-type C& channels are heterotetramerichave been shwn to develop cardiac fipertroply which was

polypeptide compbes onsisting of a,,, 0,0 and B,

attenuated when mice were treated with the L-typé&" Ca

subunits.a, sutunit proteins are classified into 4 classeschannel blocker verapandi.

These include Ca.1 @,9), Cal1.2 @,), Cal.3 (@, and

Cal4 (,p.5'? Cardiac muscle xpresses only the
dihydropyridine sensitie a, . sutunit which is encoded by
the CACNALC gene'? The a,. sulunit consists of 4

The L-type C& channel blocker diltiazem is
beneficial in reducing cardiagpertroply and fibrosis in a
mouse model of familial hypertrophic cardiomyopath
(aMHC?%%"), that expresses an Arg403GIn missense

homologous motifs (1-4) each of which consist of @nutation in one allele of the cardigg&-myosin hesy

transmembranen-helices (S1-S6) which are lial by
cytoplasmic loop$. The 4 motifs of thex, - sutunit form

chain® This mutation has been demonstrated to be
associated with disrupted SR 4Ca homeostasis,

the pore of the channel which regulates ion conductanaaracterized by excess sarcomeri¢*Qhie to increased
voltage sensing and contains binding sites for chann&l&* sequestration by the mutant sarcomere, and® Ca

modifying second messengers, toxins and dfdgs? The
a,d sutunit of the L-type C# channel is an accessory
sulunit which consists of 2 proteins,, and & which are

depletion in the SR. The disruption to SREOaomeostasis
preceded the delopment of cardiac ypertroply in
aMHC4%%"™* mice, while early administration of diltiazem

encoded by the same gene separated by posttranslatiggrabented the declopment of cardiac ypertroply. In this
cleavagel®1’ The & part is a transmembrane protein withmodel it was proposed that diltiazem inhibition of the L-

large extracellular and short intracellular portions while
is located entirelyxdracellular>1® The 2 proteins are lirgd
by a disulfide bond to form the,5 sulunit that associates
with the a,. subunitvia surface interaction! There is
evidence to suggest that thg sutunit facilitates structural
modification of the channel whil® modulates wltage
dependent aatétion and inactiation kinetics!’1° The a5
sulunit plays a role in tréitking thea, . sukunit to the cell
membrane and gellating voltage dependent aetion and
inactivation kinetics of the channél. The B, sulunit of

type C&" channel attenuates €&dnduced C&' release,
limiting Ca?* sequestration by the mutant sarcomere and
subsequently the delopment of pathology.

The role of the L-type Ca channel in the
development of lypertroply has also been studied in
humans. The expressiornvéts of a, . andp, sukunits of the
L-type C&* channel are eleted in cardiac preparations
from patients with hypertrophic obstruati
cardiomyopati?® In addition patients with ifothy
syndrome, that results from a mutation within theg.

cardiac L-type C# channels is an accessory subunit that isutunit of the L-type C# channel exhibit significant

entirely intracellularlt is tightly bound to the ytoplasmic
linker between motifs | and Il of the, . sulunit called the
a-interacting domain (AID$? The B, sutunit plays a role
in regulating trafficking of thea,. sutunit to the cell

cardiac lypertroply.?” These findings support the notion
that the L-type CH channel may play a significant role in
the mechanismsolved in the deelopment of pathology.

membrane, modifying open probability of the channel and
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Role of Ca%" in mitochondrial function superoxide to kD, and glutathione peroxidase and
. ) peroxiredoxins 3 and 5, which aant H,O, to water and
Caf* and ATP production oxygen?951.56-59nder these conditions, small alterations

steady-state concentration of OB regulate signal
ransduction pathways, gene expression, proliferation, and
Lell death by apoptosf8:53.60

Uninhibited increases in ROS production, in which

antioxidant defenses become inadequate, lead to asddati
stress'2%% Increases in ROS end 10 umol/l
(intracellular) are associated with mitochondrial damage
and damage tody macromolecules such as DNA, proteins
and lipids®*%561-67 This can ultimately lead to increased
apoptosis and delopment of heart failure. Sub-lethal
increases in BS (1-10umol/l intracellular) can actate a
number of C&-dependent signaling kinases and
transcription factors including M#, serine-threonine and

A ; tyrosine kinases, CaMK and MAPK byaw of thiol
Activation of the TCA gcle enhances the production Ofmodiﬁcation in the absence of cell de?t§>58Alterations

NADH, that triggers meement of electrons don . th ionall ki A ke iated with
complees | through to IV of the electron transport chain" N€s€ signaiing kinases en associated Wi

(ETC) by initially donating electrons to compld.3”47 pathological28 G%r%/vth and progressionweeds - cardiac
Electrons are also fed into the E& complec Il due to hypertl\r/quly.h ' ari . OR ducti
the cowersion of succinate to fumarate within the TCA itochondria are a major Source o production

ithi i 47,55,79,80
cycle. Comple& IV is the terminal electron acceptor whichWlthln tcatl_rdlacf myoy:te_z. in th Ttheh St:;".’ldly ?t.at?]
acts to covert oxygen to water During this process concentration of superoxide in the mitochondrial matrix has

complxes |, Il and IV pump protons from the bheetn. sr;ﬁwn t? bellapprgxmaltelySto%ég;folgdrlt[ghe: than
mitochondrial matrix into the intermembrane spacé,a In the cylosolic and nuclear spacem adaition o

resulting in increased proton maiforce that consists of mitochondria, a number of other sites within the cell can
an electrochemical potential, also kmoas mitochondrial produce RS including NAD(P)H oxidase, xanthine

membrane potential'{ ), and a proton gradient. This E)X%a&;’eHanqd n'm? oxide .sygthast?]. Irasgular t|stsue
proton motve force results in the production off R from (P)H oxidase is recognized as the predominant source

ADP at complg V.333747While the production of ATP is a Of_ superqxide generatidd. In cardiac myoygtes
Ce?*-dependent process, it is recognized Wt remains mitochondria hee been demonstrated to play a major role

highlv polarized and is not influenced by 2Cainder in the generation of ROS dpring acute (_:hange_s in cellular
cognd)i/tior:ns of lov intracellular C& (O—ZOOnM)‘“); redox staté38 NADPH oxidase, xanthine oxidase and

nitric oxide synthase do not appear to contribute teetld
Ca2* and mitochondrial ROS ROS production during acute changes in cellular redox

state?3:84
During oxidatve phosphorylation some of the

electrons passing dm the ETC leak out and react withRole of the cytoskeleton in cardiac function

molecular oxygen to form ®@S. Theterm ROS generally . . .
refers to oxygen molecules in fdifent redox state:52 The gtosleleton consists of microtutes comprised
The production of ROS begins with the reduction of oxyge?lf tubuI!n, m!croﬂlaments comprised ~of actin, . and
to superoxide anion (£») that is generally unstable andlntermgdlzzte f|Iamen(';s.| Thefytosllleletal hnet\mrk.l. IS
rapidly dismutated to hydrogen peroxide,@y). Although recognized as a modulator of cell morphologptility,

. . ) 86
ROS ae commonly recognized as being detrimental to tHgtracytopIasmlc transport and ”?'“’%- It has. also.been
health of oganisms, it is nav recognized that ROS can actproposed that ytosleletal proteins may assist with the

as signaling molecules able to stimulate and modulateCg§MMunication of signals from the plasma membrane to

85,87 i A
variety of biochemical and genetic systems including th@tracellular oganelles: There s good \adence that

regulation of signal transduction pathways, gexjgression cardiac L-type CH channel activity can be regulated by
and proliferatior® ’ various components of theytoskeletor£®-%* Furthermore,

Under normal pysiological conditions, l leves of in ziddit_ion to modulating cytoplasmi(? and mitoghondrial
ROS (0.05-0.07 pmol/l intracellular) are required to C‘f"z ’ e"dence has 'recently been provided fcgudatpn of
maintain normal cellular functiotf. This includes mltochorjdrlal function by the L-type €achannelvia an
regulation of biochemical and genetic systems such ggsomaﬂon through the cytoskelen.
signal  transduction pathays, gene expression andcyioskeletalegulation of L-type C& channel activity
proliferation3 Maintenance of psiological levels of ROS
is achieed due to a fine balance between ROS formation There is good evidence to suggest a role for the
and breakdown by antioxidarft%®15% These include cytoskeleton in modulating cell surée membranevents
mangnese superoxide dismutase, which veds such that external mechanical signals may be transduced to

Cardiac excitation and contraction is powered b
ATP. ATP is gnthesized predominantly within
mitochondria via a Ce?*-dependent process known a
oxidative phosphorylatior?33*Ca&* enters the mitochondria
via the mitochondrial C4 uniporter as a result of a strong
electrochemical gradient for €a influx.3>36 Ca&* is
extruded from the mitochondrigia the NCX37-3° Uptake
of C&* by the mitochondria triggers agdtion of three ky
detydrogenases of the tricarboxylic acid (TCAycke
including isocitrate  deldrogenase, a-ketoglutarate
detydrogenase andypuvate delydrogenasé’#° Ca* is an
absolute requirement for adtion of isocitrate
detydrogenase anda-ketoglutarate dglirogenasé!“6
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internal sitewia alterations in gtoskeletal oganization®®8” desmin has been obsed/ in very close proximity to
This includes the regulation of &aransport. mitochondria in skeletal and heart muséfe!!® Mice
L-type C&* channels are anchored to filamentouseficient in intermediate filament liek protein desmin
actin (F-actin) networks by subsarcolemmal stabilizindisplay abnormal accumulation of subsarcolemmal clumps
proteins that also tightly gelate the function of the of mitochondria and reduced metabolic activity in both
channef?:90.92-94.96-%jicrotubules hare keen demonstrated skeletal and cardiac muscdi® In addition, treatment of
to regulate L-type Ca channel activity in isolated chick cultured cells with agents that depolymerize intermediate
ventricular myogtes® When microtubules are dissociatedfilaments hae keen demonstrated to result in codisitibn
with colchicine, L-type C# channel activity is reduced, of mitochondria with peripherally located
while myocytes exposed to the microtubule stabilizingnicrotubulues®1There is alsoddence to suggest that
agent taxol demonstrate increased channelvigc®? regulation of mitochondrial functiowvia the gtoskeleton
Microfilaments also appear togwate cardiac L-type G4 occurs as a result of docking proteingiséng on
channel actity. Depolymerization of F-actin with mitochondria  which also bind to yioskeletal
cytocholasin D has been sk to cause a reduction in L- element$®110.112,115-119
type C&" channel current in adult guinea pigniricular )
myocytes®® The effect is attenuated when mytes are CYtoskeleton and cardiomyopathy
pre-incubated with phalloidin, an inhibitor of F-actin
depolymerization. In addition, neonatal cardiac nyyes
isolated from transgenic mice lacking gelsolin (an acti
severing protein) exhibit increased L-type €achannel
currents® The efect is attenuated when myocytes ar
treated with gtochalasin D or when dialyzed intracellularlyh
with gelsolin.
Dystrophin is a subsarcolemmal protein that links th

cytoskeleton to transmembrane proteins and the plas - : ;
. ction are associated with the vdiepment of the
membrane of cardiac mypes?9499101 Apsence of P

. . athology*?! These include defects irxteacellular matrix,
dystrophin forms the molecular basis for Duchenng 9y

. arcolemma, SR, myofibrils, mitochondria, and nuclei
muscular dystroph (DMD), an X-linked neuromuscular ¢ o tin 121 Disruption of the gtoskeleton in DMD and
disordel102Cardiac dysfunction, particularlyypertrophy

; . . . familial cardiomyopathies due to mutations itaskeletal
and dilated cardiomyopathis frequently observed in e ; . ; : -
: X . : ) roteins are associated with reduced mitochondrial oxygen
with DMD.°1103-107The cardiomyopathis associated with P ¥o

L . . . _consumption and subsequently reduced AP
cytoslkeletal protein disarray and mitochondrial dysfunctlorbroductignm_lzz quently

Cardiac myogtes from dystrophin-deficientndX mice do
not demonstrate altered L-type “Cachannel density Role of the cytoskeleton in regulation of mitochondrial

assessed using patch-clamp analysis, yet a delay@@ction by the L-type Ca?* channel
inactivation rate of the current has been recordle:108

Since the auxiliary3, sukunit regulates inaatétion of the We have explored the mechanisms by which
channel and also associates with subsarcolemnsatoskeletal disruption leads to abnormal mitochondrial
proteins?-98 the function of theB, sutunit of the L-type function and compromized cardiac function.

Ca* channel may be altered as a result of the absence of L-type C& channels are anchored tgtaskeletal
dystrophin. networks by subsarcolemmal stabilizing proteins that also

It therefore appears that microties and regulate the function of the chanrf@f092-94.9-%There is
microfilaments play an important role in stabilizing thedlso evidence for regulation of mitochondrial functioa
cardiac L-type C% channel protein in the plasmathe gtoskeleton as a result of docking proteingséing on
membrane and may assist in conformational changes in théochondria which are capable of binding tdoskeletal
channel protein during auétion and inactiation. It was €lementg>110112115119\We rave demonstrated that in
recently demonstrated that tilg sulunit of the channel addition to C&" influx, alterations in L-type C4 channel
associates with actinvia a 700 kDa subsarcolemmal actvity are suficient to modulate mitochondrial function
stabilizing protein knen as AHMK.%6-9 B-adrenergic Viaan association through the cytoskeleton.
regulation of L-type C& channel activity is regulated as a We ativated the channel directly with application of
result of the physical coupling between fiesutunit of the  the  ditydropyridine  agonist Bay K8644 (BayK(-)),
channel and actinvia the carboxy-terminal region of depolarization of the plasma membrane after exposure of

Alterations in gtoskeletal protein gganization are
associated with cardiac pathology such ygertroply and
Tailure. Studies performed in patients with sporadic or
familial hypertrophic cardiomyopayhhave revealed that
utations in the cardiac actin gene can result in cardiac
ypertroply or failure!?° In addition, experimental models
of heart &ilure and studies on patients with heaituire
fdicate that defects in mygie subcellular aganelle

AHNAK_ %8 adult guinea pig ventricular mygies to 45mM KCI, or
_ _ _ _ voltage-step of the plasma membrane using patch-clamp
Cytoskeletal egulation of mitochondrial function technique. This resulted in a significant increase in

mitochondrial superoxide production, NADH and metabolic

__Cytosleletal proteins .C;'j‘?ogrﬁgu'a‘e the subcellulag i, in a C&*-dependent mann In addition, direct
distribution of - mitochondrid> The intermediate actvation of the channel resulted in an increase'{p

filament linker protein plectin, which colocalizes W'th(Figure 1). The increase in¥_ occurred in a
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Figure 1. Direct activation of the L-type Ca®* channel results in an increase in W_. A: Ratiometric JC-1 flu@scence
recorded from a myocyte befoend after &posue to 2M BayK(-) and from another myocyte bedcand after exposure

to 2 uM BayK(+). Arrow indicates when treatments wedded. © establish that the JC-1 signal was indicativeigf 20

uM oligomycin (Oligo) and 4uM FCCP wee added at the end of elaexperiment to collaps&’  whee indicated. B:
Mean+ SEM of dlanges in JC-1 fluorescence for myocytes exposedd BayK(+) or 2 uM Bay(-) as indicated.C:
JC-1 fluorescencescoded from a myocyte befoend after &posue to 45 mM KCl, from a myocyte beferand after &po-
sure to 2 uM nisoldipine (Nisol) then 45 mM KCI, andom another myocyte betoend after &posue to 2 uM Nisol.
Arrow indicates when treatments wedded. D: Meant SEM of banges in JC-1 fluorescence for myocytes exposed to 45
mM KCI or Nisol as indicatedE: JC-1 fluoescenceacoded from a myocyte patch-clamped and held initially at —30 mV
then voltge-stepped to +10mV followed by a vaéestep bak to —30 mV as indicated with arrowsqNage-stepped) and

in another myocyte held at —30 mV and not vgdtatepped to +10 mV (Not volje-stepped).F: Mean+ SEM of banges

in JC-1 fluorescence for myocytes vg#astepped and not volge-stepped as indicatedrepoduced with permissionoF
further detail please see Viola, Arthur & Hool LC (2089).
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Ca&*-independent manneAdditionally, the increase iWY_~ can block VIAC caused a significant increase W
was atenuated in the presence of the actin filamerfFigure 2) mimicking the responsegked by exposure of
depolymerizing agent latrunculin A or when mytes were cardiac myogtes to BayK(-), depolarization of the plasma
exposed to a synthetic peptide directediaa the AID of membrane with application of 45 mM KCI, ooltage-step
the L-type C& channel (AID-RT), that preents the of the membrane during patch-clamp of the cell (Figure
conformational meement of theB, sukunit of the channel 1)9 The L-type C& channel is capable of altering
during actvation and inactiation of the channel. mitochondrial function throughytoskeletal proteins as a

The B, sulunit of the L-type C# channel is tightly result of transmission of mement from theB3, sutunit of
bound to them, . subunitvia the AID>20|t is also tethered the channel that occurs during sation and inactiation of
to the gtoskeletonvia subsarcolemmal stabilizing proteinthe channel® An association betweerytoskeletal proteins
AHNAK.% The B, sulunit plays an important role in and mitochondrial protein VBC appears to play a role in
regulating open probability of the channel and \&tibn this mechanism.
and inactation kinetics?%123124n addition to C&" influx,
the L-type C&" channel is capable of galating
mitochondrial function throughytoskeletal proteins when
conformational changes in the channel occur during
activation and inactiation. This appears to occur as a result
of transmission of meement from thef, sukunit of the
channel through actin filaments.

We investigated the mechanisms for the alteration in
W~ after actvation of the channel. & oonsidered a f
candidate protein that could respond to vemeent '
transmitted to the mitochondria from thgtaskeleton and /
result in alterations inW_ One possibility is the VBC. KCN
VDAC, dso knavn as mitochondrial porin, is a 32 kDa 10 20 30
pore forming protein that resides in the outer mitochondrial
membrand?>126 VDAC is wltage-dependent and is
activated during depolarizing potentials and remains in an B
open state at approximately —10/#128In the open state
VDAC exhibits weak anionic selectivity and is permeant to
ATP, while in the closed state VAL exhibits weak cationic
selectivity and is virtually impermeant to AF#:12°

VDAC associates with the adenine nucleotide
translocator (ANT) that resides in the inner mitochondrial
membrané?® The VDAC/ANT comple is responsible for
trafficking of ATP/ADP in and out of the mitochond#&
Cytosleletal proteins can modify the rate of TRA
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production by the mitochondria because mild trypsin BayK(+) BayK(-) DIDS
treatment of permeabilized rat cardiac mytes that results n=6 n=9 n=4
in cytoslkeletal disarray causes a decrease in apparent K % P <0.05 compared to BayK(+)

for ADP130 There is good evidence that thgtaskeletal
protein ap-tubulin can regulate the function of AT
because exposure of purified XD to tubulin causes
voltage-sensitie revesible closure of VIBC assessed
using the single channel patch-clamp technigte.
.Fu.rthermore,.tuhnlm can Increase thg a}pparer}]t. for ADP drug was added. 4 mM KCN (K cyanide) was added to col-
in isolated mitochondri&! An association between \AT lapseW_as indic.ated B: Mean+ SEM of ans in JC-1
and tululin therefore appears to play a role in regulation q uorescnénce for myoéyfes expased t0 BayK(+), BayK(), or

mﬂochqndnal resplranon. - DIDS as indicated. DIDS: 4'diisothiocyano-2,2stil-
Since regulation of¥_ is in part dependent on the . . .
m benedisulfonic acid.

function of VDAC,132133we irvestigated whether VBC
plays a role in mulating mitochondrial function in
response to alterations in L-type ahannel actity. Conclusions

Activation of the L-type C& channel with BayK(-) causes

an increase in¥ _ in isolated cardiac mygtes® We The cardiac myoge is a dynamic cell and mement
examined whether directly blocking transport from theluring contraction influences maprocesses within a cell.
mitochondrial outer membrane could mimic the effect ofhe gtoskeleton participates by assisting in transmitting
BayK(-). Exposureof adult mouse cardiac mygtes to movement from the plasma membrane to intracellular
4,4 diisothiocyano-2,2stilbenedisulfonic acid (DIDS) that organelles.  Mitochondria are  comple organelles

Figure 2. Exposure of myocytes to DIDS results in an
increasein W _. A: Ratiometric JC-1 flu@scenceecorded
from a myocyte befer and after e&posue to 10 uM
BayK(-) or 10 uM DIDS. Vertical arrow indicates when
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Figure 3. Proposed model explaining transmission of movement of the 3, auxiliary subunit of the L-type Ca?* channel
through the cytoskeletal network to mitochondrial VDAC in response to activation of the channel. The alphalC 4, )
sulunit is shown as four ansmemkane repeats 11,11l and IV Auxiliary sulunits a,d and g, sulunits of the channel ar
shown as indicated. AHNAK, 700 kDa subsarcolemmal stabilizing protein; Mito hmitdiéa; VDAC, voltage-dependant
anion channel (for further detail see text).
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