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Diffuse traumatic brain injury and the sensory brain
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Summary caused by dlls, accidents, child abuse). Even with
) _ sophisticated imaging technigugs,it shavs little
1. In this review, we dscuss the consequences 10 thgigyalizable damage other than axonal dam@geild
brain's crtex, specifically to the sensory cortex, Ofyitfuse injury is knen to cause cognite ceficits and
traumatic brain injury. memory loss! which are suggested to be due to neuronal

2. The thesis underlying this approach is that longyamagd? Early treatment for injured neurons is currently
term deficits in cognition seen after brain damage ifna/gilable in clinical settingg.
humans are liély underpinned by an impaired cortical Generally diffuse injury-induced brain changes are
processing of the sensory information needed toedripejie/ed to invdve wbtle alterations in neuronal function
cognition or to be used by cognii rocesses to produce agng circuit dynamics. Because of this, it is held to be under
response. _ o diagnosed and likely to fafct up to 600 people per 100,000
3._We take it here t_hat the impairment to SeNsorypepple annually TBI outcomes can range from ysical
processing does not arise _from damag_e to pe”PheEﬁéabiIity to memory loss and cogmii dysfunction
sensory systems but from disordered brain processing iqf|uding \ery seere and life-long debilitating deficits in
sensory input. cognitive and sensorimotor functiol:14 Cognitive ceficits
include attention and memory deficits, reduction in
information processing speétiand psychiatric disordeps.
Motor impairments include deficits in fine motor skills such
Traumatic brain injury (TBI) can result from yan as finger-tapping and grip strengthand coordination,
blow to the head such as in car accidents, sporting fieWhere patients were found to vea impaired gait and
blows, physical abuse, falls, military conflict and terrorisbalance'® Persistent sensory deficitsveabeen atensiely
activity.1® The first four account for most TBI inviians demonstrated across a number of t&sksand across
and the latter tav for a very lage recent increase in TBI modalities!®?° People with mild to moderate diffuse TBI
among defense personnel andvilEns!3 Globally, usually receer motor skills fully, but cognitve ceficits and
adolescents from 15-19 years, and adults > 65 yedremory loss tend to be persistéft.
constitute groups likely to sustain a TBirn Australia and
New Zealand TBI is more commonly encountered in youn
males than females and is primarily caused by autemoti TBI occurs in tvo phased:35-8Primary injury occurs
accidents from speedirig. _ _ at the time of trauma and can be either from diregsichl
Mortality rate for seere TBI is 20-30% in desloped  jypact (focal TBI), or from inertial forces due to rapid
countries and as high as 90% inveleping countries.  cceleration-deceleration of the brain figie TBI). This is
While the death rate has declinedxothe past 20 years, the 5qqryated by hypoxia from lung blast injury or brain stem
morbidity rate has remainedvariant despite advances in damage, which occurs in almost 40% of TBI patients. TBI
critical care and diagnostic techniques; hospitalization g can cause loss of neuronal cells in the immediate
Australia has increased by 7%-33% (depending on TBcinity of the trauma. Primary injury is then foled by
type) from 1999/00 — 2004/F5Although some drugs and secondary injury processes which are responsible for the
physiological techniques ke shown therapeutic potential yroionged actiation of mary molecular cascades as a part
in experimental models, phase I-Ill clinical trialsvéa f normal pathophysiological responses and cause delayed
proven ineffective a even harmful to patients. _ secondary brain damage to the already damaged brain
In general terms, TBI is classified as focal ofu$é, tissye, through multi-factorial processes that include
although both often co-exist. Focal injury describes diregliqative dress,  Ecitotoxicity,  hypoxia-ischemia,
physical damage to the brain, resulting from a direcblojyflammation and cerebral oedefi@ihese secondary brain
to the head® and is often characterized by lesionniury processesxacerbate the primary damage ooke
formation, haematomas and haemorrhages detectable usipg damage, affecting neuronal surli and function in
imaging techniques such as computer tomogrgpfi) and  hyman and animal models of TBI. Fhare often the most
magnetic resonance imaging (MRI)The majority of gestryctve component of TBI and responsible for most of
people suffering TBI ha dffuse TBI;** which is caused he neurologic deficits observed after TBI in both human
by inertial  forces  induced ~ during  rapidgygies and experimental models of TBR
acceleration/deceleration of the héadind is highly In addition to the pathologic outcomes of primary
prevalent in cases of closed head injuries (such as thoggqy secondary brain injuries, human TBI is often coupled

The epidemiology and clinical consequences of
traumatic brain injury

E’hases of brain injury
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Figure 1. Morphological indices of diffuse axonal injury in the impact acceleration moddl.panels show coronal sec-
tions of the brain at 1.3 mm caudal tcegma. A&C are data from a sham sgery control animal,B&D from a difuse
traumatic brain injury animal A&B show the egon of the corpus callosum (CC) to show the immunohistochemical stain-
ing for GFAP as an indeof astrocytosis. Notehe absence of any astrocytosis in the control animal and thealstrg”
staining throughout the CC in the TBI anim&&D show the egon of the sub-ventricular zone (SVZ) in the sananbr
region to show the immunohistochemical staining for neurofilament-heavy chain (200 kDa) asxaof iadmal injury

NF-H is one of three NF proteins that neakp he axonal cytoskeleton with “sidearm” domains whéan be phosphory-
lated following injury that may then contribute in somgrde to enlagement of the axonal diameteend can impair
axonal transport following TBI. NF-H an@amyloid precusor protein argandaid markers of TBI. Note the absence of
any staining in the control animal and the staining in the TBI animal.

with post-traumatic ypoxie?? from respiratory depression, 1);28 and axonal injury is the main feature offdife brain
lung puncture, tracheal obstruction, and cerebralamage and is responsible for thgese disability seen in
hypoperfusior?®  Post-TBI hypoxia  xacerbates patients with TBR® Axotomy occurs at the time of injury
neurological deficit§* It is known that axonal injury and and continues during the secondary injury phase. Rapid
hypoxia-ischemia on their own increase oxidatiress and acceleration/deceleration induces shearing forces on the
cause brain tissue damagdt is likely that axonal injury axons which cause stretching and tearing darffage.
will cause sensorimotor and cogwdi ceficits resulting Disruption and seering of the gtoskeletal structure of the
from impaired synaptic function; and post-TBjipoxia will axon results in compromised axonal protein transport and
exacerbate  sensorimofor cognitve ad memory intracellular protein accumulation at the point of axonal
dysfunction when compared with TBI alone. breakage to form retractionulbs’® as early as 1 hour post-
trauma3? As a part of secondary axonal damage, increased
membrane permeability occurs within 6 hours of $8BlI,
resulting in cellular oedema. Trauma-inducextessie
C&* influx into the cell impairs normal cellular
Diffuse TBI does not typically causeent lesions or metabolism, causes mitochondrial swelfthgnd disrupts
cell death in corte or thalamus but causes widespreadhe axonal gtoskeletor* Neurofilament disruption (Figure
damage to neurons and cerebralsaulaturé226.27 |n 1D) can also occur through protein phosphorylation and
particula; white matter tracts of corpus callosum andide-arm proteolysi& All these mechanisms result in
brainstem suffer axonal swelling and injury (see Figurgecondary axotomyhought to occur hours to days after the
initial damagé®. Beta amyloid precursor proteirB-APP)

Factors disrupting neuronal function in TBI

Axotomy
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accumulates at the point of axonalveance, indicating glutamate in the synaptic cleft is impair€dExtracellular
impaired axonal transport post-T#1. glutamate accumulation can also occur following an
Diffuse axonal injury results in increased asttosis increase in blood-brain barrier permeability after tradfna.
and macrophage infiltration up to 2 weeks post-infdry The accumulation of xeessie dutamate and other
mainly due to gtoskeletal breakdown during primary andexcitatory amino acids in the synaptic cleft results in
secondary injuryWhile cell death in corteis not generally activation of postsynaptic NMBR and AMPA receptors,
seen after diffuse axonal injuA/these neurons undgr enabling &cessve C#* influx into the post-synaptic
atroply, with increased neuronal degeneration in the uppeeuron?® High intracellular C&" increases mitochondrial
cortical layers 48 hours post-injud%®” In rodent sensory damage leading to a disruption of intracellular metabolism
barrel cortex, the atroghspreads from upper and inputand to production of free radicals by aeting enzymes
layers at day 1 post-injury to middle and deep layers by daych as phospholipases and proteas#s.
7, and to deep layers, white matter and ibtarel septa by Excessie dutamate release and decreased r&mo
day 28'2 Diffuse injury causes axotomy andafter injury leads to prolonged glutamatergic depolarisation
neuroinflammation in the thalamus (VPM), again with navhich likely extends the open time ofoltage-gited N&
neuronal los$8 channel$? Influx of Na' is followed by Cf ions, which
results in higher intracellular osmolalitiater enters the
cell down the concentration gradient and results in cellular
swelling and ytotoxic oedemd? The excitotoxic release of
gree radicals can further potentiate glutamate toxicity by

Oxidative stress

In hypoxia-ischemia, which can occur after TBI
impaired mitochondrial function leads to incomplete ~~ '° . ke
reduction of Q and the formation of reavgé oxygen |nh|b|t|nhg astrogygc gllétargate “pt‘?‘ 'I | d
species (ROS) such as the free radicals, the superoxiHe The TBI-in u<f:e c _anlg);els n guta(;nate re eia\?e an
anion (Q°), and the hydroxyl radical (OH), angdrogen the consequences for ionic balances and neuronal function

peroxide (HO,), and reactie ritrogen species (RNS) such h?vti keen well SIUdi?d in ihe hippocampuls, .in rt]he odn_treBl
as peroxynitrite (ONOQ.3° Normally, ROS and RNS are © q € mer.nor?/ |mp:ja||rme? TsBeFerllotl:lommon_lyBlln thumaq
scarenged and detoxified by the endogenous antioxidafif'® !N anhimal models o ' owing  there 1S

enzymes superoxide dismutase, catalase, and glutathigﬁ%reased excitability of yyamidal neurons of the CAl

peroxidase. Excess free radical productionverwhelms region of the hippocamptis, resulting from increases in
. extracellular K and glutamate concentrations, and

endogenous antioxidaé mechanisms resulting in . 1 56 : o .
oxidative camagé® by reacting with lipids and proteins andlntracellular [C3"].5¢ Cerebral ischemia induces an increase
in extracellular [K] and intracellular [C&] during

altering their structure and function. For example Iipiﬂin

peroxidation by free radicals leads to a loss of membraﬁgpo}ari_zatior?? Pyramidal .Iyperexcitability co uld Iead_ to
integrity and function. In addition to increasedOR eficits in memory formation and processing, and is also

formation during kpoxia, mechanically stretched neuronéinkecj to post-TBI delopment of seizure aefly, for

also increase ROS and RNS formation as a result \g]hich the hippocampus is a ko epileptic focus? It has

increased intracellular [@4, making them prone to been proposed that TBIl-induced change in ionic balance

oxidative dress’® Neurons are particularly susceptible tc)between intra and extracellularvélenments is responsible

o Lo ; Iterations in the synaptic phenomenon of long term
oxidatve damage due to their high oxygen consumptloﬁOr altera ’ : .
and the high lipid content of the myelin sheath, and |Op0tent|at|on (LTP) that is belied to underlie some forms

9,60 o
levels of antioxidant actity.** Neuronal cell death, through of memory’ The_chgnges i lonic balances. could be
apoptosis and necrosis, is induced by oxieatiress®4: exacerbated by oxida® dress since free radicals can

This occurs through membrane disruption andADNdlsrljpt ionic balance in neurons by compromising

damage, which disrupts mitochondrial function and furthépi_m?rggg fL;ncUtcﬁ% alndh |mpa}|r|ngdlon pump/c?;;ggel
propagtes oxidatie gress?® A strong correlation xists activity.™ Dysfunctional channels and pumps cou

between the extent of oxidedi gress and the pathogenesisthe threshold for action potentials and makppocampal

of TBI,*2 Increased leels of oxidatve dress markers are cells more prone to hyperactivy.

found in human cerebrospinal fluid after TBland free hi Howaller, n oontr_a_lst t? these ObS@'.“D”S |nd$c§t|ng
radicals play a known role in mediatingytaskeletal d!ppocigmpa ﬂ?pe_rr%clm:y di ro\rynm ;ransrtr;:ttte;_B?n lonic
damage and axonal transport following diffuse T8I. ISruptions, other studies avn tha causes a

suppression of CA1 neuronal aity and an inhibition of
Disruption of neuronal functions and interactions due to LTP®®These changes in TBI are consistent with changes
synaptic and ionic imbalances in inhibition, and the increase in excitation in the dentate
. _ gyrus (DG) could be a result of direct increases in
High concentrations of glutamate are released durirgcitation or impaired inhibition that would normally
TBI, likely due to stretch/chemical stimulation of pre-suppress xxessie exitation® Similarly, a decrease in
synaptic terminalé; leading to excitotoxicity of post- excitatory CA1 activity could be due to a direct or indirect
synaptic neurons. Up-regulation of glutamate releasgcrease in inhibition.
regulgtors such as compie | and Il at the terminal 'also Changes in inhibitory astity are likely not the only
contritutes to increased glutamate relefsén hypoxia-  explanation for the region-specific fifences in the
ischemia, uptak by adjacent astrocytes of xeessve  hippocampus. Enhancing and blocking inhibitory action in
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Figure 2. The impact acceleration method for induction offde traumatic brain injury and behaviour outcomes from
the process. Ahows the components of the impact injury model (see Mameaal, 1994°). B shows the profile of the
accelention of the head in this injury pcess.C shows the long-term sensorimotor deficits induced by this injury; data
illustrated show the time taken for thet to remore an adhesive tape skuto the foepaw The bold vertical dashed line
represents the day on whiclBI was induced — no behaviour tests eveonducted on that dayata represent meart
SEM. Sham sgery controls, n = 14; TBI, n = 19.

the DG and CALl area respeety, after TBI has shown that demonstrated in studies that use [bdnd TNFe receptor
these treatments were only able to partially restore fEP@Rtagonists to decrease neuroinflammation and cell loss
slopes in both mgHons, suggesting that othemctors after injury’®

governing regional changes in excitability arevisived®
Another fictor that could contribute to the lack atiation
in the CA1 region might be the loss okcéatory or

inhibitory neurons due. to both primary injury and Mary experimental models e keen deeloped to
secondary injury mechanistfs. mimic human TBI each causing specific kinds of damage
and thereby modelling dédrent forms of head trauma in
humans €.g. concussion injury whiplash trauma or
Secondary brain injury wolves neuroinflammation acceleration/deceleration forces)he three most well-
due to actiation of an immune response ofytakine established models are the fluid percussion (FRlpsed
production, microglial actetion and macrophage cortical impact (CClIy? and weight-drop
infiltration (see Figure 1B¥ Activation of inflammatory impact/acceleration (WDIA) modefé. Both the FP and
cascades is a normal cellular response vollg injury, CCIl models result in a combination of focal andfuié
functioning primarily to protect and repair the damag@jury, and produce similar pathologies including cerebral
caused by the initial injuryHoweve, the toxic mediators vascular damage, oedema and axonal injéi§f Our model
released at the early stages of inflammation cause furtlodrchoice is the WDIA model (Figure 2) \i#oped by
injury to the already damaged br&hAn inflammatory Marmarouet al?® to investigate only diffuse injury’ We
response wolves production of pro-inflammatory have examined this model with high-speed videogmaph
cytokines like interleukin-1 (IL-1), IL-6 and tumour (Figure 2A) and identified three major processes
necrosis factor (TN, and anti-inflammatory ytokines contrituting to, or causing damage in this model: (a) object
such as IL-10 and IL-12, all of which are seen in thenpact onto the skull creating a shockawe like
cerebrospinal fluid of TBI patients within axféours of the phenomenon that is transmitted into the brain, (b) welati
primary injury® Inflammatory cytokines ILd, IL-1B and movement between skull and brain, and (c) whiplash
IL-18 are also increased after T#I.The detrimental motion of the neck. Thesefefts are likely to be ery
properties of these pro-inflammatorytakines hae been similar to what occurs in motoehicle accidents, as well as

Concussve dosed head impact models the damage seen
in car and sporting accidents

Neuroinflammation
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likely in sporting field accidents. &\kelieve that each of changes in a unique experimental model thatwallo
these contributes mainhf not solely to one facet of the interpretation of electrophysiology in parallel with
traumatic brain injury seen with the Marmar@t al. extensive m-going work on the cellular and molecular
model?® The impact force (Figure 2B) is likely to causechanges in the appropriate cortex.
rapid suppression of neuronal &i§i in brains areas In humans, persistent sensory deficits related to
directly impacted by the bl and this can hae flow-on diffuse brain injury occur across modaliti€g%7>""Galvin
effects to more distant brain areas which ree@iput from and colleagu€§ reported changes such as enhanced
the immediately-affected regions. It isdily that the second sensitvity in visual, auditory and touch processing in
factor contributes mainly to the diffuse traumatic axongbaediatric TBI patients (as reported by an assessment scale
injury that is characteristic of this model. Finaltie last provided to care-giers) for a year after injury Many
factor is likely to cause rupture of the brainstem bloodtudies report ypersensitiity to sensory stimulf>’’
vessels, resulting in disturbances to respiratory and cardiBdients with TBI often she changes specific to processing
control rgions in the brainstem, and can lead to deathf comple sensory cues® e.g. Brosseau-Lechainet all’
through respiratory and/or cardiac failure. shaved increases in dynamic orientation-identification
In ary case, this model replicates the pathology athresholds up to 12 weeks post-injuwhile more simple
diffuse injury of wide-spread traumatic axonal injurystatic thresholds remained ufested. Other studies using
without focal lesions, and causes long-term sensorimotarore direct measurements of sensory abilitie® meported
and cognitre deficits (Figure 2C), comparable to humarcases of auditory and visual changes in adult TBI, in the
diffuse brain injury We have applied this model to the form of longer P300 latencies and smaller amplitd8€$.
study of hev traumatic brain injury affects sensorySpeeded motor tasks and response time tasks are also
encoding in cortex. affected in mild/moderate difse TBI/-16 again suggesting
disturbances in sensori-motor processing; and there are
mary long-lasting cognitie impairments een ater motor

: 1 )
The causes of the prolonged functional deficits iﬁ’”"“‘?” has reo‘”ﬁ? €.g. Faul et_ al, 2010; Brossgau
diffuse TBI are rarely knent25The absence of eus achaineet al, 2008:' It still remains an open guestion as

cell death and the array of cogwti axd memory to the extent to which the long term sensory deficits may
deficitg-313-20.70-72 gyggests a substantial but subti§oNtribute to the cognite and motor deficits.
functionalalteration with ramifying consequences, and one In rats, our Epenmenta_ll SPecies, mild-to-aze .TBl
beyond resolution of standard imaging/histolotiyis worth causes long-term motor deficits in standard behaviour tests
noting here that TBI-induced deficits in cognition, memor uch78as rotarod and beanalivtasks up to 6-8 weeks post-
and meement are iariably viewed as resulting from BI.™ Sensory processing d_eﬂuts%aheen Seen using
damage to brain areas specific to those functibtmvever tasks dependent on sensory input solely from thyeace
most TBI sufferers sho changes in ho they proces,s whiskers (a critical sensory system, as detailed in thx ne

. imin 2,78
sensory information and since sensory input and itsect|on below) een over 6 weeks post-injury>™ These

processing by the sensorium are critical to understand tﬁ%nsorimotor deficits could be due to peripheral changes or

! . . X ! 37
world and guide compie behaviours; sensory processing dlshr_U£t|085 (|jn sensontr)n:';tor Iprocezfsdlqg hrmNE.
deficits may easily affect these behaviours. It has be ISKEFbased sensory aural morbidily has been

) . -
recognized that at least some impairments magphia _la_tgnlmte.d .to trt1alarr‘r;|,c neuronaclwc:;\m?ge and a;tﬁdﬁﬁ t
disruption of the integration of sensory input. aiamic Inputs sh some rgjr at one-month post-
Sensory systems W mary advantages for gxo_tomy from re—estlabllshment of trophic su_pport, as
examination of functional alterations in flise TBI. indicated by expression of axonal and synaptic emark

Sensory input can be very precisely specified and direc ch as GAP-43 and Sy”gptg’ﬁ"!‘ n _thalamus r_;md
related to eeryday objects and experiences, and senso ppoca}rr.]pusoearly.after T8l an_d In retina gf_t(_er retinal
receptor surfaces are generally mapped very precisely nalkmjurygt _P§r5|s_tence oftbgural n:orb|d|t|es|s ver
topographically to at least the primary sensory cortex. Th 5 Weeks postinjury In our studysuggests axonal repair.
corte is laminated in aary highly oganized fashion with over this time does not compen§ate for TBI-induced circuit
inter-laminar interconnections often well described, and th@anges or mayen be naladapwe.

neuronal computations occurring within the functional unifne rat barrel cortex is an appropriate model for

of a sensory corke(the column of cells in the gyematter studying sensory cortex changes in TBI
stretching from cortical surface to the white matter and

spanning cells across the laminae) are accessible to study in In rats, the lage face whiskers and olfaction pide

a manner that links these computations well to beha. the major sensory inputs for interfacing with the world and
These attributes of sensory input and of the sensoriuhe whisker system pvides the same high-fidelity
makes sensory cortean ideal test bed forxamining the information as human vision, hearing and to#fc#. The
hypothesis that alterations in functional interactions imat mystacial pad system is highlyganized, with short
cortical circuitry underlie the deficits of flife TBI. W&  (microvibrissae) and long (maoribrissae) whiskrs
first briefly describe the sensory deficits that occur iarranged in a rostral to caudalshion, respeatély, aong
diffuse TBI, before expanding on the sensory corticdhe snout with the whiskers arranged in a grié-lfattern

Sensory deficits may underlie behaviour changes in TBI
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of arcs and ns1%8 Rats @in vibrissa information through sham leels. The mechanisms behind long-term
active “whisking” under muscle controlver objects or hypereccitability  post-TBI hae keen studied
from passie deflections from head motion or objectselectroplysiologically in hippocampd$®!?® and corts
moving pastt®>19|n human touch, too, discrimination of through histological techniques and the study of field
gratings by actie hand maement is the same as when thepotentials3”118 Hyper-excitability in these studies has been
grating is moed passvely over the hand and both auditory linked to increases in excitatory potentials as well as
and visual discrimination are equally good with hegel/e decreases in inhibitory fefacy, supporting the theory of
movement as without such naement. imbalanced excitation/inhibitiof.6511°

This sensory system offers great adhages for However this has yet to be tested directiynly a
directly linking sensory encoding to behaviour becausery sparse number of studies vba investigated
natural whisking patterns are well described for ynarelectroplysiological changes in sensory cartgter injury,
behaviour$8-9 The whisker systers’information-bearing and none ha dudied long-term alterations in cortical
parameters h& drong parallels with those in human touchactivation. Three days after brain injyrgvoked potentials
and translate to human touch for discriminating finefrom somatosensory core have significantly longer
textured object$? Two other factors also play an importantlatencies and reduced field potential slopegtraeted
role in making this system attraai for studying sensory through &eraging the indiidual depths at which the
cortex in TBI. Whiskers form a constant pattern on taed maximal field potential ws found for each anim&l® in
and are easily manipulated to apply a range of simple akeeping with decreased metabolic mation as early as 4
complex stimuli. Finally, the types of mechanoreceptorhours, and up to 24h after inju§! Post-TBI
endings of primary afferent neurons in the whisfollicle  hypereccitability after cortical isolation injury has been
and the neural pattays through brainstem andlinked to increases in frequgncand amplitude of
contralateral thalamus to the input layer (Layer IV) of thepontaneousxeitatory synaptic currents and a decrease in
postero-medial barrel sub-field (PMBSF)barrel cortex of  frequeng of spontaneous inhibitory synaptic currents in
primary somatosensory coxtere well described. Barrel Layer 5 at 2-6 weeks post-injury though not in
cortex neuronal plsiology especially in layers 1I-IV supragranular layefg?
(mainly lemniscal input), to simple whisk deflections is Recently we hee examined the changes in barrel
well detailed!00-114 cortex immediately afterand long after traumatic brain

The etensie wse of rats to study anatomical andnjury created using the impact acceleration mefia@ur
molecular changes in TBI, coupled with the great depth sfudies suggest that three previously described factors play
knowledge on the use of whiskers inxtraction of a dgnificant role in the immediate damage caused by this
information about the world, provide powerful reasons famethod: (1) an impact stressave travelling through the
use of the rat macvibrissal system and the associatedbrain; (2) a relatie notion between skull and brain; and (3)
barrel cort&!'® to study sensory cortical changes in TBI. Aa whiplash motion of the neck affecting brainstem neural
limited number of studies ka done sd’11618and it is and vascular structures. Our electrpgiblogical data
known that difuse TBI results in prolonged heightenedsuggest that the immediate post-TBI changes in xare
sensory sensitivity to whigk stimulation in behang dominated by the stressawe phenomenon causing a
rats!1® correlating with heightened o actvation in barrel suppression of asfity through the cortical laminae in a
cortex 6 weeks post-injur/ following on from reduced distance-dependent manner: changes in population
cFos actvation in the first week post-injurynterestingly, responses are greatest in the supra-granular layers and
these changes were not associated with detectable cell Isswllest in the infragranular layers (Figuré3)The firing
in barrel corte.’> The absence of detectable damage aate changes were not accompanied by changes in response
these gross lels has led to a shift in emphasis in the ratiming as might bexpected for relayed sub-corticafests.
macroibrissae system to thalamic chanjess the basis of This is consistent with theat that the firing rate changes
TBI-induced deficits in sensory neuronal function. occurred as a result of cortex-specific mechanisms.

) o o We have also examined the long-term fedts of
Changes in sensory cortex excitability with diffuse TBI 15178 8.10 weeks after TBI created using the same impact
Some recent studies\edarted to hint at the nature accele_ration _method. Some effet;t§ were similar to those

seen immediately after impact injury and othefedb

of the electropysiological changes in sensory corte ted ; that ti iod
caused by TBI. Immediately folldng brain injury there is suggested a process of reey overthat imé perio (see
igure 4; compare top woof panels against bottom woof

a dobal suppression of sensory cortical responses in Laﬁ .
4 between 5 to 20 minutes after injufgllowed by a period panels). As in the short-term case, supra-granufper

of increased actdtion (abae haseline activity) at excitation is_ agin seen in t.he larger C?”? anq Is
approximately 2 hours after injuty’ This was also seen unaccompanied by grchanges in response timing, ey

histologically by Hall & Lifshit?” who found that ver 6 consistent with our conclusion of coxtepecific changes in

weeks, there was an initial attenuation in cFos stainJ . Again, there was no yper-ecitation in input and

neuronal actiation of the primary somatosensory carte infra-granular layers. At the populationvét of smaller

lasting for one week post-injurfollowed by an increase in pells in all layers there a® no suppression of activiyity
actiity in the cortex, thalamus and hippocampus vabo instead supra-granulayper-excitation as in the large cells,
' suggesting that the smaller neurongereto a n&v hyper-
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Figure 3. Distance-dependent suppression of neuronal activity 24 hours post Impact injihe panels show the popu-
lation responsgplotted as the Grand Peri-Stimulus Time Hggtm of firing rate with time from stimulus onset, in TBI ani-
mals or Sham cordt animals. Eab row presents a Grand PSTH for a particular cortical lamina: L2 = layer 2, taken as
150-300um from the cortical surface; U3 = Upper layer 3, taken as 350-280 from the cortical surface; D3 = Deep
layer 3, taken as 550-7Q@n from the cortical surface; L4 = Layer 4, tek as 750-100@m from the cortical surface; and

L5 = Layer 5, taken as 1100-14@n from the cortical surfaceThe Grand PSTHSs for a layer veegeneated by aveaging

the firing rate of all cells and clustein that layer acoss all animals in a particular test condition (TBI or Sham). Data
avelagal from a ptal of 7 TBI and 6 Sham gay animals. The stimulus used tergate these Gand PSTHs was a
trapezoid stimulus with an onset ramp of 400 mm/s, a hold phase of 20 ms, and a fall ramp phase of 40 ms.

excitable set point following the shockaweimpact. Peri- naturalistic whisker motions that mimic natural babars
and post-stimulus inhibition is seen in the populatiofsee Alvis et al, 2012”3 for details) not by simple trapezoid
responses, suggesting that inhibitory input (at least frowhisker deflections. In contrast, our data whdhat

some interneuron populations) remains intact. immediate post-TBI supra-granular large celypér-

. ) i ) excitation was found only for simple trapezoid deflections
Different mechanisms ae likely responsible for long- of the whislers. Thisis an intriguing difference and we
term and short-term sensory cortex hyper-excitability postulate that the immediate post-TBifeefs reflect a

T ; selectve release of the supra-granular large cells from
Hyper-eccitability is seen in supra-granular dar >~ - :
yp y pra-g inhibition exerted by small cells which ka become

cells immediately after induction of diffuse TBI and 8 d1th h all cortical | b ‘ o
weeks later and it @uld be parsimonious to assume that th uppressed through all cortical fayers by a streseiiom
the impact force. Hoever, by 8 weeks post-TBI the small

latter simply reflects the formeHoweve, in long-term lis h d and in fact exhibit itati
TBI, the typer-eccitation was reealed only by compbe cells hae feco/ered and in fact exhibl yper-e_xu_alon,
much like the large cell supra-granulayger-eccitation at
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Figure 4. Comparison of the short term and long termamges in firing rates after traumatic brain injuryThe panels
show the ratio between the mean peak firgig in TBI animals to the mean peak firing rate in Shamespcontrol ani-

mals tested at the same time point post Mtatio of 1 indicates that firing rates in the two groupsevibe sameEach
column of panels is analysis of data obtained with one stimuluswipeh is shown above the column of panels. The left
column presents data obtained with a simple trapezoid eh@gflection and the right column presents data obtained with
a more comple whisker motion that mimics the motion of the whiskdbserved across a rough surface in rats trained to
discriminate a rough from a smooth surface (seegdoti-Kossmanret al, 20028 for details). The top row of panels
presents effects seen in animals tested 24shmst-induction of injury and the bottoraw of panels presents effects seen

in animals tested 8-10 weeks post-induction of injuryhe panels edctbar presents data for a cortical layer indicated in

the abscissa labels at the bottom (L2 = layer 2; U3 = Upper layer 3; D3 = Deep layer 3; L4 = Layer 4; and L5 = Layer 5;
layers defined in depth terms as detailed iigue 3 legand). Note that 24 hosrpost-TBI thee is a cepth-dependent sup-
pression of responses in TBI animals (n=7) relative to their Shagergucontrols (n = 6), with responsesquressively
improving towards normal with increasing depth. In contrast, 8 weeks after TB& iharnassive hypeexcitation to sen-

sory stimulation in TBI animals (n = 16), in the two uppermost layers, near-normal responses in D3 and L5 and a small
suppression of responses in the input layer 4, when compared with Slggrg santrols (n = 14).

this stage. This yper-ecitation must reflect some excitation/inhibition balance in cortetowads increased
permanent change, perhaps as a result of increageditation, manifesting early after injurgnd persisting for
presynaptic output, increased postsynaptic sensitivity orary weeks.

reduced inhibitory input. In Layer 5 of mouse neooqrte Sensory cortical response changesehdso been

axon regeneration has beenwhoto occur 28 days post- suggested to occur through sub-cortical chadg&syhich
TBI,*?*and this may also play a role in théeefs we see in may lead to increased cortical aation.!?>126 However,
long-term TBI. Overall, these studies support a shift in théhe general absence of changes in layer 4 responses post-
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TBI in our study (at least in the long-term), and the absenpathways can occur following strek through circuit
of ary timing changes in supra-granular layers whereeoganization}3® which is known to occur during periods
hyper-eccitation did occur suggests that our effects areof cortical plasticity where inhibitory aetty is reduced6
unlikely to be due to changes in thalamic input to cortex. suggesting the regenization of cortical pathays
Complete loss of cortical inhibition is not needed taurrounding the injured area. Cortical ischemia, as occurs
account for the effects we report.eWhsened cortical during ischemic strak also results in impaired inhibitory
hyper-ecitation in the presence of stimulussdr neuron actiity, shifting the balance teards increased
inhibition in TBI cells. In auditory corte cortical excitation}®” as has been confirmed in electrgsiblogical
inhibition is differentiated into surround and within-fieldstudies of strok&, showing increased cortical excitation and
inhibition (arising outside and within the neursn’ alterations in synaptic activity®
excitatory response area, respedti; c.f. Rajan 200312 Finally, it is worth noting that sensory processing
and only the former is affected in peripheral injury-inducedeficits and fper-sensitiity to sensory stimuli may
cortical changé?® Then, loss of surround inhibition contribute significantly to deficits and impairments in high-
resulted in stronger responsegreto gimuli from within  order cognitie processes and motor function in other brain
the response area, despite premtiom of in-field disorders such as schizophrenia, autism and Fragile X
inhibition.128 This is consistent with our finding of strongersyndrome. Then the excitation/inhibition imbalances we
responses to stimuli applied to the principal whisker of thand in sensory cortical processing in TBI may also apply to
neurons under studyi.€, to gimuli from within the forms of brain injury®®142 and may underlie long-term
response area of the barrel carteeurons) while still deficits in cognition in manbrain disorders.
shaving in-field inhibition. In auditory corte surround
inhibition shapes responses predominantly to complé\cknowledgements

stimuli*?” and this may account for thedt that in our This study vas funded by grant number APP1029311
|mpact/<':1jcce!erat|on TBI mjzderl],. Iﬁg—termﬂer—ex%tatlg_r(; from the National Health and Medical Research Council of
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