The role of ryanodine receptor Ca²⁺ leak in t-system Ca²⁺ handling in skeletal muscle fibres

T.R. Cully,¹ R.H. Choi,¹ T.R. Shannon² and B.S. Launikonis,¹ ¹School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia and ²Department of Molecular Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA.

The tubular (t-) system of skeletal muscle forms a junction with the sarcoplasmic reticulum (SR), with some 12nm between the membranes. In the resting muscle, $[Ca^{2+}]$ within the small volume bound by the junctional membranes should be determined by the leak of Ca²⁺ through the SR ryanodine receptors (RyRs), the Ca²⁺ handling ability of the t-system and diffusion of Ca²⁺ from the junctional space (js). The $[Ca^{2+}]_{js}$ is expected to be higher than $[Ca^{2+}]_{bulk}$ with a standing gradient set between the RyRs and SR Ca²⁺-pumps. We aimed to detect the effects of RyR Ca²⁺ leak into the junctional space by harnessing the ability of the t-system to detect changes in this domain by monitoring a Ca-sensitive dye inside the t-system.

All experimental procedures were approved by The Animal Ethics Committee of The University of Queensland. Wistar rats were euthanized by CO₂ asphyxiation and the *extensor digitorum longus* and *soleus* muscle rapidly excised. Muscles were pinned down in a Petri dish above a layer of Sylgard under a layer of Paraffin oil. Bundles of fibres were isolated from the muscle and exposed to a physiological solution containing 2.5mM rhod-5N. After 10 mins a fibre was isolated and mechanically skinned, trapping the rhod-5N in the t-system as it sealed.

To detect the RyR Ca²⁺ leak and its effects on t-system handling we exploited the fact that t-system Ca²⁺ uptake activity will be set by $[Ca^{2+}]_{j_s}$. T-system Ca²⁺-uptake activity was tracked with rhod-5N trapped in the t-system of mechanically skinned fibres of rat slow- and fast-twitch muscles on a confocal microscope. Chronic depletion of $[Ca^{2+}]_{s}$ with caffeine reduced $[Ca^{2+}]_{t-sys}$ to 0.1 mM *via* chronic activation of store-operated Ca²⁺ entry. We then exposed Ca²⁺-depleted preparations to 28nM-1.3µM $[Ca^{2+}]_{cyto}$ in 50mM EGTA to allow observation of t-system Ca²⁺ uptake rates at known $[Ca^{2+}]_{bulk}$. Experiments were repeated in the presence of ImM tetracaine or 10mM Mg²⁺ to block RyR Ca²⁺ leak and allow $[Ca^{2+}]_{j_s}$ to equilibrate with $[Ca^{2+}]_{bulk}$. Rhod-5N signals and $[Ca^{2+}]_{t-sys}$ were calibrated and t-system Ca²⁺ fluxes were derived. $[Ca^{2+}]_{bulk}$ and peak t-system Ca²⁺ fluxes were fitted by Hill curves. Vmax was significantly depressed in slow- compared to fast-twitch fibres. The k_D for both fibre types was right-shifted by tetracaine. It followed that at 67nM $[Ca^{2+}]_{bulk}$. $[Ca^{2+}]_{j_s}$ was 165 and 220nM in slow and fast-twitch fibres, respectively. By lowering $[Mg^{2+}]_{cyto}$ to 0.13mM to increase RyR leak further than physiological levels in the presence of a broad range of $[Ca^{2+}]_{cyto}$, t-system Ca²⁺ uptake rate and steady state $[Ca^{2+}]_{t-sys}$ and a reduced Ca²⁺ uptake rate. We conclude that increasing RyR Ca²⁺ leak activates SOCE, allowing SOCE to simultaneously act as a decreased steady state $[Ca^{2+}]_{t-sys}$ and a reduced Ca²⁺ uptake rate.

We conclude that increasing RyR Ca^{2+} leak activates SOCE, allowing SOCE to simultaneously act as a counter-current against Ca^{2+} being extruded from the fibre. Thus SOCE holds Ca^{2+} within the fibre rather than sequentially recovering Ca^{2+} previously lost from the fibre, as commonly presumed. These results also highlight that t-system Ca^{2+} fluxes can be used as a nanodomain sensor of RyR Ca^{2+} leak, an important factor in many muscle diseases.