Role of GABAa/c receptor N-terminal regions in assembly, trafficking and function

L.W. Wong,^{1,3} H.S. Tae^{1,2} and <u>B.A. Cromer</u>,^{1 1}School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia, ²llawarra Health and Medical Research Institute, University of Wollongong, NSW 2522, Australia and ³Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597.

Members of the pentameric ligand-gated ion channel superfamily (pLGICs) mediate both excitatory (eg. nicotinic acetylcholine receptors (nAChRs), and inhibitory (eg. GABA_{A/C} receptors (GABA_{A/C}Rs)) fast synaptic transmission in the central nervous system. Recently resolved pLGIC structures show an α -helix near the N-terminus of eukaryotic receptors. Helices are not present at this position in prokaryotic homologs, however, implying that these helices may not be structurally or functionally essential. In GABA_{A/C}Rs, these helices are preceded by 8-36 additional residues, which we term the N-terminal extension, not present in nAChRs. These extensions are located at subunit interfaces where they may be important for inter-subunit interactions.

As previously shown for α 7 homomeric nAChRs, we found that the N-terminal α -helix is functionally essential in homomeric GABA_CRs and that the N-terminal extension contributes to receptor assembly and trafficking. The figure shows α 1 β 2 γ 2 GABA_AR model from the extracellular side, with subunits coloured red- α 1, blue- β 2 and green- γ 2, and yellow internal highlighting of N-terminal α -helices. N-terminal extensions, shown as thicker tubes, are modelled as random coils to indicate their length. Conversely, in heteromeric α 1 β 2 γ 2 GABA_ARs we found that the role of the N-terminal α -helix was highly subunit dependent, being functionally dispensable in β 2 or γ 2 subunits but being important in the α 1 subunit for assembly and trafficking. This striking subunit dependence continued in the N-terminal extension, with deletions here in the α 1 subunit markedly assembly and trafficking but again having little effect in the β 2 or γ 2 subunits. Finally we found that small differences in the N-terminal extensions of the β 2 or β 3 subunits differentially modulate the functional effects of an epilepsy-linked mutation in the γ 2 subunit. Thus, our data support a role for the N-terminal regions in pLGIC assembly trafficking and function, with these roles being more specialized to different subunits in heteromeric receptors.

