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Introduction. More than a century has passed since Canon’s pioneering studies, and a vast literature now
underpins the field of gut motility (Szurszewski 1998). However, it must be concluded that clinical translation
has lagged. Many clinical disorders of gut motility are still poorly defined, and there remains a lack of reliable
tools to guide diagnosis, with few therapies that effectively address root causes.

One area of success has been in oesophageal motility, where the direct, high-resolution (HR) analysis of
motility patterns now allows the comprehensive classification of disease states (Kahrilaset al., 2015). However,
throughout the remainder of the gut, from stomach to the rectum, clinical tools for reliably analysing motor
patterns remain limited. Consequently, diagnostic classification schemes for abnormal motor patterns in the
stomach, small intestine, colon and rectum and have remained embryonic. In recent years, however, translational
progress in HR motility diagnostics has begun to advance (Dinninget al., 2010; Chenget al., 2013). We
describe two areas of significant current progress: HR electrical mapping and HR colonic manometry, with a
specific focus on recent translational applications.HR electrical mapping is a technique adapted from modern
methods in cardiac electrophysiology, inv olving the use of finely-spaced arrays of electrodes to track electrical
propagation sequences in fine spatiotemporal detail (Duet al., 2009; O’Gradyet al., 2013). This method was
pioneered in the GI tract by Lammerset al., who custom-built silver wire arrays and applied them in multiple
innovative studies describing the motility patterns of the GI tracts of animal models (Lammers, 2015a, 2015b).

Clinical methods for the translation of GI HR mapping are now emerging. The principle device applied to
date in human studies has been a flexible printed circuit (FPC) array, employing regular arrays of gold contacts
(Du et al., 2009). The advantages of these arrays are that they can be mass-produced and easily sterilised, but
with a trade-off in signal quality, and they can only be applied at invasive surgery. A vast volume of data is
retrieved, which is processed through semi-automated software algorithms to enable efficient processing (Yassi
et al., 2012).

The FPC arrays have enabled the first reliable studies of human gastric slow wav eactivation, including
pacemaker behaviour and regional variations in activity (O’Grady et al., 2010a). More recently, the arrays have
also been applied to study the specific physiology of the terminal gastric antrum, where a sudden acceleration of
slow wav es occurs prior to the pylorus, contributing to effective trituration (Berryet al., 2016). In addition, the
FPC device is also being applied in studies defining patterns of gastric dysrhythmia in patients with motility
disorders, including studies into gastroparesis and chronic unexplained nausea and vomiting (CUNV) (O’Grady
et al., 2012; Angeliet al., 2015). Resultsfrom these studies have enabled a provisional classification scheme of
human gastric dysrhythmias, with distinction between ‘disorders of slow wav einitiation’ and ‘disorders of slow
wave conduction’ (O’Gradyet al., 2014). The figure shows an example of the classification schemes for gastric
dysrhythmia that are emerging, based on mechanisms and spatial patterns of slow wav eactivation. Aberrant
initiation relates to abnormalities of intrinsic interstitial cells of Cajal frequencies and example activities include
stable ectopic pacemakers and unstable regions of ectopic foci. Aberrant conduction involves disruption of the
normal slow wav e entrainment and examples include abnormal velocities, conduction blocks and re-entrant
activities (Reproduced with permission from O’Gradyet al., 2014). More work is required to validate this
scheme and assess its utility in diagnosis and practice, but it is already proving useful in research.

The crucial next step for HR gastric electrical mapping will be to develop non-invasive devices to expand
clinical investigations. Minimally-invasive (laparoscopic) devices have been proposed (O’Gradyet al., 2009;
Berry et al., 2016), but an endoscopic device is critically needed, to enable routine studies of gastric
dysrhythmia during upper GI endoscopy. Significant progress towards this goal has been presented in
preliminary form (Angeli et al., 2016b) and human studies are now awaited. In addition, while gastric
dysrhythmias have been strongly implicated in generating nausea and vomiting (Koch 2014; Owyang & Hasler
2002), their significance in the overall symptom profile and diagnosis and management of motility disorders still
needs to be defined (O’Gradyet al., 2014).

Another important and emerging area of clinical interest is the application of HR electrical mapping to
cases of gut dysmotility arising after surgical manipulations (Duet al., 2015). An example application is in
patients after sleeve gastrectomy, where the native gastric pacemaker is resected (O’Gradyet al.,. 2016). The
same HR mapping techniques could also be applied to surgical manipulations in the small intestine, colon and
rectum (Lammers 2015b),(Lammers 2013), although translational work in these areas has not yet significantly
progressed.
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New therapeutic directions are also needed for applications in conjunction with HR mapping, as has been
successfully achieved for many years in cardiology (Tseet al., 2016). Electrical stimulation using the only
currently-approved device (Enterra®, Medtronic) does not modify gastric dysrhythmias (Angeliet al., 2016a),
and attention is returning to the use of long-pulse (high-energy) gastric pacing in conjunction with HR mapping
(O’Gradyet al., 2010, Linet al., 1998). Whether this approach will be successful in patients with gastroparesis
and CUNV, where ICC networks are depleted and damaged awaits to be seen. Another interesting proposal is
the emerging concept of using targeted ablation therapy to eliminate aberrant sources of gastric slow wav e
initiation (Angeliet al., 2016c).

In summary, the evolution and continued application of HR gastric mapping holds promise to finally
resolve longstanding questions about the clinical significance and therapeutic importance of gastric
dysrhythmias. However, work is still needed to show the clinical importance of this new technology.

High-resolution colonic manometry is a second prominent emerging technique with potential to critically
advance translational GI motility (Dinninget al., 2010). A key advance enabling HR colonic studies has been
the development of fibre-optic catheters by Arkwrightet al., which apply a fibre-Bragg grating method to
achieve multi-point recordings at resolutions of 1 cm over long distances (Arkwrightet al., 2009).

To date, the main group publishing HR colonic manometry work has been Dinning and colleagues in
Australia (Bampton & Dinning 2013), although publications are now also emerging from groups in New
Zealand and Europe (Vather et al., 2016; Corsettiet al., 2016). An important step has been to present a
comprehensive description of normal baseline activity in the human colon (Dinninget al., 2014). A particularly
interesting result of this work has been to reveal the prominence of lower-amplitude propagating patterns, which
could not be adequately resolved with lower-resolution methods (Dinninget al., 2013).

In particular, a cyclic activity in the distal colon and rectum has now been shown to be the most active
motility pattern in the post-prandial state, which often propagates in the retrograde direction, and which may
play a role in limiting rectal filling. This pattern has potential clinical implications, as it appears to be enhanced
by sacral nerve stimulation, pointing to a possible mechanism of action for this therapy in faecal incontinence
(Pattonet al., 2013). In addition, this pattern is diminished in slow transit constipation, with patients lacking the
normal post-prandial activity increase, pointing to underlying neuromuscular dysfunction (Dinninget al., 2015).

Another emerging area of interest is again post-operative states of dysmotility. Vather et al recently
performed HR colonic manometry in patients with normal bowel function following anterior resection, and
showed that by one-year post-operatively, distal colonic motility had recovered (Vather et al., 2016). This
recovery included restoration of the normal post-prandial increase in cyclic activity, as well as the ability of
activity sequences to freely propagate across sites of healed anastomosis, implying regeneration of
neuromuscular cellular elements through scar. Comparison studies are now awaited from patients with anterior
resection syndrome, where bowel function has not recovered after surgery.

In summary, the continued application of HR colonic manometry holds promise to resolve longstanding
questions about the role of dysmotility in common disease states such as severe constipation, irritable bowel
syndrome, faecal incontinence and anterior resection syndrome. However, much work is still needed to
determine if this technique will become a routine clinical tool.

Conclusions. It is clear that a key element to progress in clinical motility disorders will be through
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improved understanding of the underlying abnormal motility patterns. Tow ards this end, translational tools for
HR motility analysis have emerged, in the form of HR electrical mapping and HR colonic manometry. Early
progress in applying these tools has been encouraging, and as a result, the coming decade may prove a
particularly productive period for the field of translational GI motility.
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