

Structure-activity relationship of α -conotoxin Mr1.1 at the human $\alpha 9 \alpha 10$ nicotinic acetylcholine receptor

Han-Shen Tae¹, Jiazhen Liang^{2,3}, David J. Adams¹ and Rilei Yu^{2,3,4}

Abstract: 184P

¹Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia

²*Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China*

³Laboratory for Marine Drugs and Bioproducts and ⁴Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China

The short disulfide-rich α -conotoxins (α -CTxs) are peptides derived from the venom of the *Conus* marine snails and the majority antagonise the nicotinic acetylcholine receptors (nAChRs) that are involved in neurotransmission, and the non-neuronal cholinergic system. A handful of α -CTxs are drug leads for the treatment of cancer, chronic pain, and neuralgia. Here, we chemically synthesized a formerly defined rat α 7 nAChR targeting α -CTx Mr1.1 from *C. marmoreus* and evaluated its activity at human nAChRs heterologously expressed in *Xenopus laevis* oocytes. Mr1.1 was most potent at the human (h) α 9 α 10 nAChR with a half-maximal inhibitory concentration (IC₅₀) of 92.0 nM. Molecular dynamics simulations suggested Mr1.1 favourably binds at the α 10(+) α 9(–) and α 9(+) α 9(–) sites via hydrogen bonds and salt bridges, stabilizing the receptor in a closed conformation. Based on the Mr1.1-h α 9 α 10 model, analogues were generated, and the more potent Mr1.1[S4Dap], antagonized h α 9 α 10 with an IC₅₀ of 4.0 nM. Furthermore, Mr1.1[S4Dap] displayed analgesic activity in the rat chronic constriction injury pain model and therefore presents a promising drug candidate.