Hypothalamic Neurofibrosis: A New Player in the Fight Against Metabolic Disease Cait A Beddows¹, Feiyue Shi¹, Anna Horton^{2,3}, Sagar Dalal⁴, Ping Zhang⁵, Chang-Chun Ling⁵, V. Wee Yong⁶, Kim Loh⁷, Ellie Cho⁸, Adam J Rose⁹, Magdalene K Montgomery¹, Nicki Packer⁴, Matthew Watt¹, Benjamin L Parker¹, Robyn Brown^{2,3}, Edward SX Moh⁴, **Garron T Dodd^{1*}** - ¹ Department of Anatomy and Physiology, The University of Melbourne, Parkville, Melbourne, Australia. - ² Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Melbourne, Australia. - ³ Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne. - ⁴ School of Natural Sciences, Macquarie University, Australia. - ⁵ Department of Chemistry, University of Calgary, Canada - ⁶ Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada. - ⁷ St. Vincent's Institute of Medical Research, Fitzroy, Australia. - ⁸ Biological Optical Microscopy Platform, The University of Melbourne, Parkville, Australia. Metabolic diseases such as obesity and Type-2 diabetes are characterised by insulin resistance. Cells within the arcuate nucleus of the hypothalamus (ARC) become insulin resistant and are a key regulator of metabolic dysfunction but the mechanisms are incompletely understood. Here, we identify a specialised chondroitin sulfate proteoglycan extracellular matrix (CSPG-ECM) that encapsulates neuronal populations in the ARC. Remodelling of the CSPG-ECM during the progression of metabolic diseases drives neurofibrosis, insulin resistance and metabolic dysfunction. We show that decreased CSPG-ECM turnover in the ARC is a hallmark of obesity and other metabolic diseases. Enzymatic- or small molecule-induced disassembly of CSPG-ECM within the ARC of obese/insulin-resistant mice enhances insulin infiltration into the brain, promoting the remission of neuronal insulin resistance and improved metabolic health. Our study identifies neurofibrosis as a fundamental mechanism underlying the development of obesity and insulin resistance and presents a therapeutic strategy for treating metabolic diseases. ⁹ Dept of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.